Thermal conductivity of glasses: first-principles theory and applications

被引:19
|
作者
Simoncelli, Michele [1 ]
Mauri, Francesco [2 ]
Marzari, Nicola [3 ,4 ]
机构
[1] Univ Cambridge, Cavendish Lab, Theory Condensed Matter Grp, Cambridge, England
[2] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy
[3] Ecole Polytech Fed Lausanne, Theory & Simulat Mat THEOS, Lausanne, Switzerland
[4] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MAR, Lausanne, Switzerland
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会;
关键词
BOLTZMANN TRANSPORT-EQUATION; FUSED-SILICA; 1ST PRINCIPLES; TEMPERATURE; QUARTZ; DYNAMICS; PHONONS; SYSTEMS; MODEL; HEAT;
D O I
10.1038/s41524-023-01033-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Predicting the thermal conductivity of glasses from first principles has hitherto been a very complex problem. The established Allen-Feldman and Green-Kubo approaches employ approximations with limited validity-the former neglects anharmonicity, the latter misses the quantum Bose-Einstein statistics of vibrations-and require atomistic models that are very challenging for first-principles methods. Here, we present a protocol to determine from first principles the thermal conductivity kappa(T) of glasses above the plateau (i.e., above the temperature-independent region appearing almost without exceptions in the kappa(T) of all glasses at cryogenic temperatures). The protocol combines the Wigner formulation of thermal transport with convergence-acceleration techniques, and accounts comprehensively for the effects of structural disorder, anharmonicity, and Bose-Einstein statistics. We validate this approach in vitreous silica, showing that models containing less than 200 atoms can already reproduce kappa(T) in the macroscopic limit. We discuss the effects of anharmonicity and the mechanisms determining the trend of kappa(T) at high temperature, reproducing experiments at temperatures where radiative effects remain negligible.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Thermal conductivity of glasses: first-principles theory and applications
    Michele Simoncelli
    Francesco Mauri
    Nicola Marzari
    [J]. npj Computational Materials, 9
  • [2] Impact of Impurities on the Thermal Conductivity of Semiconductor Nanostructures: First-Principles Theory
    Gibbons, T. M.
    Estreicher, S. K.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (25)
  • [3] Thermal conductivity of silicene from first-principles
    Xie, Han
    Hu, Ming
    Bao, Hua
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (13)
  • [4] Thermal conductivity in intermetallic clathrates: A first-principles perspective
    Lindroth, Daniel O.
    Brorsson, Joakim
    Fransson, Erik
    Eriksson, Fredrik
    Palmqvist, Anders
    Erhart, Paul
    [J]. PHYSICAL REVIEW B, 2019, 100 (04)
  • [5] Minimum thermal conductivity in superlattices: A first-principles formalism
    Garg, Jivtesh
    Chen, Gang
    [J]. PHYSICAL REVIEW B, 2013, 87 (14)
  • [6] First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications
    Hu, S. X.
    Collins, L. A.
    Goncharov, V. N.
    Kress, J. D.
    McCrory, R. L.
    Skupsky, S.
    [J]. PHYSICS OF PLASMAS, 2016, 23 (04)
  • [7] First-principles calculations of the lattice thermal conductivity of the lower mantle
    Stackhouse, Stephen
    Stixrude, Lars
    Karki, Bijaya B.
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 2015, 427 : 11 - 17
  • [8] Harmonic phonon theory for calculating thermal conductivity spectrum from first-principles dispersion relations
    Shiga, Takuma
    Aketo, Daisuke
    Feng, Lei
    Shiomi, Junichiro
    [J]. APPLIED PHYSICS LETTERS, 2016, 108 (20)
  • [9] First-principles study on the ultralow lattice thermal conductivity of BiSeI
    He, Yucong
    Zhou, Jian
    [J]. PHYSICA B-CONDENSED MATTER, 2022, 646
  • [10] Unified first-principles theory of thermal properties of insulators
    Ravichandran, Navaneetha K.
    Broido, David
    [J]. PHYSICAL REVIEW B, 2018, 98 (08)