Degenerate Kolmogorov equations;
Regularity theory;
Classical solutions;
Dini continuity;
Taylor formula;
Pointwise regularity;
BMO pointwise estimate;
VMO pointwise estimate;
OBSTACLE PROBLEM;
FREE-BOUNDARY;
TAYLOR FORMULA;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We present recent results regarding the regularity theory for degenerate sec-ond order differential operators of Kolmogorov-type. In particular, we focus on Schauder estimates for classical solutions to Kolmogorov equations in non-divergence form with Dini-continuous coefficients obtained in [30] in collaboration with S. Polidoro and B. Stroffolini. Furthermore, we discuss new pointwise regularity results and a Taylor-type expansion up to second order with estimate of the rest in Lp norm, following the recent paper [14] in collaboration with E. Ipocoana. The proofs of both results are based on a blow-up technique.
机构:
Univ Autonoma Metropolitana, Unidad Azcapotzalco, Ave San Pablo 180, Azcapotzalco 02200, Cdmx, MexicoUniv Autonoma Metropolitana, Unidad Azcapotzalco, Ave San Pablo 180, Azcapotzalco 02200, Cdmx, Mexico
Esquivel-Avila, Jorge A.
ELECTRONIC RESEARCH ARCHIVE,
2020,
28
(01):
: 347
-
367