REGULARITY RESULTS FOR KOLMOGOROV EQUATIONS BASED ON A BLOW-UP ARGUMENT

被引:0
|
作者
Rebucci, Annalaura [1 ]
机构
[1] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
关键词
Degenerate Kolmogorov equations; Regularity theory; Classical solutions; Dini continuity; Taylor formula; Pointwise regularity; BMO pointwise estimate; VMO pointwise estimate; OBSTACLE PROBLEM; FREE-BOUNDARY; TAYLOR FORMULA;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present recent results regarding the regularity theory for degenerate sec-ond order differential operators of Kolmogorov-type. In particular, we focus on Schauder estimates for classical solutions to Kolmogorov equations in non-divergence form with Dini-continuous coefficients obtained in [30] in collaboration with S. Polidoro and B. Stroffolini. Furthermore, we discuss new pointwise regularity results and a Taylor-type expansion up to second order with estimate of the rest in Lp norm, following the recent paper [14] in collaboration with E. Ipocoana. The proofs of both results are based on a blow-up technique.
引用
收藏
页码:139 / 162
页数:24
相关论文
共 50 条
  • [21] ON THE BLOW-UP PROBLEM FOR THE EULER EQUATIONS AND THE LIOUVILLE TYPE RESULTS IN THE FLUID EQUATIONS
    Chae, Dongho
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (05): : 1139 - 1150
  • [22] Non-blow-up and blow-up results to heat equations with logarithmic nonlinearity on stratified groups
    Kashkynbayev, Ardak
    Kassymov, Aidyn
    Suragan, Durvudkhan
    QUAESTIONES MATHEMATICAE, 2023, 46 (06) : 1105 - 1117
  • [23] BLOW-UP FOR NONLINEAR MAXWELL EQUATIONS
    D'Ancona, Piero
    Nicaise, Serge
    Schnaubelt, Roland
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [24] Boundary blow-up and degenerate equations
    Kichenassamy, S
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 215 (02) : 271 - 289
  • [25] Blow-up in nonlinear heat equations
    Dejak, Steven
    Gang, Zhou
    Sigal, Israel Michael
    Wang, Shuangcai
    ADVANCES IN APPLIED MATHEMATICS, 2008, 40 (04) : 433 - 481
  • [26] On blow-up of solution for Euler equations
    Behr, E
    Necas, J
    Wu, HY
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (02): : 229 - 238
  • [27] Blow-up results for systems of nonlinear Schrodinger equations with quadratic interaction
    Dinh, Van Duong
    Forcella, Luigi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (05):
  • [28] Blow-up results of the positive solution for a class of degenerate parabolic equations
    Dong, Chenyu
    Ding, Juntang
    OPEN MATHEMATICS, 2021, 19 (01): : 773 - 781
  • [29] REFINED BLOW-UP RESULTS FOR NONLINEAR FOURTH ORDER DIFFERENTIAL EQUATIONS
    Gazzola, Filippo
    Karageorgis, Paschalis
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (02) : 677 - 693
  • [30] ON THE BLOW-UP RESULTS FOR A CLASS OF STRONGLY PERTURBED SEMILINEAR HEAT EQUATIONS
    Nguyen, Van Tien
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (08) : 3585 - 3626