Biological and Mechanical Response of Graphene Oxide Surface-Treated Polylactic Acid 3D-Printed Bone Scaffolds: Experimental and Numerical Approaches

被引:9
|
作者
Mashhadi Keshtiban, Mohsen [1 ]
Taghvaei, Hadi [2 ]
Noroozi, Reza [1 ,2 ]
Eskandari, Vahid [2 ]
Arif, Zia Ullah [3 ]
Bodaghi, Mahdi [4 ]
Bardania, Hassan [2 ]
Hadi, Amin [2 ]
机构
[1] Univ Tehran, Fac Engn, Sch Mech Engn, Tehran, Iran
[2] Yasuj Univ Med Sci, Cellular & Mol Res Ctr, Yasuj, Iran
[3] Univ Southampton, Dept Mech Engn, Southampton SO17 1BJ, England
[4] Nottingham Trent Univ, Sch Sci & Technol, Dept Engn, Nottingham NG11 8NS, England
关键词
3D printing; bone scaffolds; dynamic culture; mechanical properties; tissue engineering; CULTURE; REPAIR; CELLS;
D O I
10.1002/adem.202301260
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Employing 3D printing bone scaffolds with various polymers is growing due to their biocompatibility, biodegradability, and good mechanical properties. However, their biological properties need modification to have fewer difficulties in clinical experiments. Herein, the fused-deposition modeling technique is used to design triply-periodic-minimal-surfaces polylactic-acid scaffolds and evaluate their biological response under static and dynamic cell culture conditions. To enhance the biological response of 3D-printed bone scaffolds, graphene-oxide (GO) is coated on the surface of the scaffolds. Fourier-transform infrared spectroscopy, X-ray diffraction, and energy-dispersion X-ray analysis are conducted to check the GO presence and its effects. Also, computational fluid dynamics analysis is implemented to investigate the shear stress on the scaffold, which is a critical parameter for cell proliferation under dynamic cell culture conditions. Compression tests and contact-angle measurements are performed to assess the GO effect on mechanical properties and wettability, respectively. Also, it was shown that surface-treated scaffolds have lower mechanical properties and higher wettability than uncoated scaffolds. A perfusion bioreactor is used to study cell culture. Also, field-emission-scanning-electron-microscope and 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl-tetrazolium-bromide (MTT) assay analyses are conducted to observe cell viability and cell attachment. An increase of up to 220% in viability was achieved with GO and dynamic cell culture. GA: This study investigates 3D-printed bone scaffolds, employing fused-deposition modeling and graphene-oxide (GO) coating to enhance biocompatibility. Analytical techniques confirm GO presence and effects. Computational fluid dynamics assesses shear stress, critical for cell proliferation. Mechanical tests show lower properties due to coating process. Biological responses reveal up to 220% increased viability with simultaneous GO coating and dynamic cell culture.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Photocatalytic Properties of Eco-Friendly ZnO Nanostructures on 3D-Printed Polylactic Acid Scaffolds
    Sevastaki, Maria
    Papadakis, Vassilis M.
    Romanitan, Cosmin
    Suchea, Mirela Petruta
    Kenanakis, George
    NANOMATERIALS, 2021, 11 (01) : 1 - 13
  • [42] Correction to: In situ silver nanoparticle synthesis on 3D-printed polylactic acid scaffolds for biomedical applications
    Semih Calamak
    Menekse Ermis
    Journal of Materials Research, 2021, 36 : 3380 - 3380
  • [43] 3D-printed porous calcium silicate scaffolds with hydroxyapatite/graphene oxide hybrid coating for guided bone regeneration
    Liu, Kang
    Jin, Xin
    Wang, Min
    Bai, Yufei
    Jiang, Hongjiang
    Zhu, Qiang
    Zhang, Peng
    CERAMICS INTERNATIONAL, 2025, 51 (01) : 1103 - 1114
  • [44] Use of 3D-printed polylactic acid/bioceramic composite scaffolds for bone tissue engineering in preclinical in vivo studies: A systematic review
    Alonso-Fernandez, Ivan
    Haugen, Havard Jostein
    Lopez-Pena, Monica
    Gonzalez-Cantalapiedra, Antonio
    Munoz, Fernando
    ACTA BIOMATERIALIA, 2023, 168 : 1 - 21
  • [45] 3D-printed cryomilled poly(ε-caprolactone)/graphene composite scaffolds for bone tissue regeneration
    Dias, Daniela
    Vale, Ana C.
    Cunha, Eunice P. F.
    C. Paiva, Maria
    Reis, Rui L.
    Vaquette, Cedryck
    Alves, Natalia M.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2021, 109 (07) : 961 - 972
  • [46] The Mechanical Properties and Degradation Behavior of 3D-Printed Cellulose Nanofiber/Polylactic Acid Composites
    Zhang, Zhongsen
    Cao, Bingyan
    Jiang, Ning
    MATERIALS, 2023, 16 (18)
  • [47] Mechanical and surface properties of a 3D-printed dental resin reinforced with graphene
    Salgado, Helena
    Fialho, Joana
    Marques, Marco
    Vaz, Mario
    Figueiral, Maria Helena
    Mesquita, Pedro
    REVISTA PORTUGUESA DE ESTOMATOLOGIA MEDICINA DENTARIA E CIRURGIA MAXILOFACIAL, 2023, 64 (01): : 12 - 19
  • [48] Mechanical properties of surface-treated banana fiber/polylactic acid biocomposites: A comparative study of theoretical and experimental values
    Jandas, P. J.
    Mohanty, S.
    Nayak, S. K.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 127 (05) : 4027 - 4038
  • [49] Biological study of polyethyleneimine functionalized polycaprolactone 3D-printed scaffolds for bone tissue engineering
    Khoshnood, Negin
    Shahrezayee, Mohammad Hossein
    Shahrezayee, Mostafa
    Shams, Alireza
    Zamanian, Ali
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (29)
  • [50] Characterization and Preliminary Biological Evaluation of 3D-Printed Porous Scaffolds for Engineering Bone Tissues
    Liu, Chen-Guang
    Zeng, Yu-Ting
    Kankala, Ranjith Kumar
    Zhang, Shan-Shan
    Chen, Ai-Zheng
    Wang, Shi-Bin
    MATERIALS, 2018, 11 (10)