Biological and Mechanical Response of Graphene Oxide Surface-Treated Polylactic Acid 3D-Printed Bone Scaffolds: Experimental and Numerical Approaches

被引:9
|
作者
Mashhadi Keshtiban, Mohsen [1 ]
Taghvaei, Hadi [2 ]
Noroozi, Reza [1 ,2 ]
Eskandari, Vahid [2 ]
Arif, Zia Ullah [3 ]
Bodaghi, Mahdi [4 ]
Bardania, Hassan [2 ]
Hadi, Amin [2 ]
机构
[1] Univ Tehran, Fac Engn, Sch Mech Engn, Tehran, Iran
[2] Yasuj Univ Med Sci, Cellular & Mol Res Ctr, Yasuj, Iran
[3] Univ Southampton, Dept Mech Engn, Southampton SO17 1BJ, England
[4] Nottingham Trent Univ, Sch Sci & Technol, Dept Engn, Nottingham NG11 8NS, England
关键词
3D printing; bone scaffolds; dynamic culture; mechanical properties; tissue engineering; CULTURE; REPAIR; CELLS;
D O I
10.1002/adem.202301260
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Employing 3D printing bone scaffolds with various polymers is growing due to their biocompatibility, biodegradability, and good mechanical properties. However, their biological properties need modification to have fewer difficulties in clinical experiments. Herein, the fused-deposition modeling technique is used to design triply-periodic-minimal-surfaces polylactic-acid scaffolds and evaluate their biological response under static and dynamic cell culture conditions. To enhance the biological response of 3D-printed bone scaffolds, graphene-oxide (GO) is coated on the surface of the scaffolds. Fourier-transform infrared spectroscopy, X-ray diffraction, and energy-dispersion X-ray analysis are conducted to check the GO presence and its effects. Also, computational fluid dynamics analysis is implemented to investigate the shear stress on the scaffold, which is a critical parameter for cell proliferation under dynamic cell culture conditions. Compression tests and contact-angle measurements are performed to assess the GO effect on mechanical properties and wettability, respectively. Also, it was shown that surface-treated scaffolds have lower mechanical properties and higher wettability than uncoated scaffolds. A perfusion bioreactor is used to study cell culture. Also, field-emission-scanning-electron-microscope and 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl-tetrazolium-bromide (MTT) assay analyses are conducted to observe cell viability and cell attachment. An increase of up to 220% in viability was achieved with GO and dynamic cell culture. GA: This study investigates 3D-printed bone scaffolds, employing fused-deposition modeling and graphene-oxide (GO) coating to enhance biocompatibility. Analytical techniques confirm GO presence and effects. Computational fluid dynamics assesses shear stress, critical for cell proliferation. Mechanical tests show lower properties due to coating process. Biological responses reveal up to 220% increased viability with simultaneous GO coating and dynamic cell culture.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Surface modification of 3D-printed polylactic acid-hardystonite scaffold for bone tissue engineering
    Shirali, Danial
    Emadi, Rahmatollah
    Khodaei, Mohammad
    Emadi, Hosein
    Abadi, Mostafa Arab Eshagh
    Tayebi, Lobat
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 308
  • [22] Influence of polydopamine/polylactic acid coating on mechanical properties and cell behavior of 3D-printed calcium silicate scaffolds
    Wang, Guisen
    MATERIALS LETTERS, 2020, 275
  • [23] Effects of liquid lubricants on the surface characteristics of 3D-printed polylactic acid
    Kim, Gang-Min
    Lee, Sung-Jun
    Kim, Chang-Lae
    SMART MATERIALS AND STRUCTURES, 2024, 33 (08)
  • [24] In situ silver nanoparticle synthesis on 3D-printed polylactic acid scaffolds for biomedical applications
    Calamak, Semih
    Ermis, Menekse
    JOURNAL OF MATERIALS RESEARCH, 2021, 36 (01) : 166 - 175
  • [25] Mechanical deviation in 3D-Printed PLA bone scaffolds during biodegradation
    Senaysoy, Safa
    Ilhan, Recep
    Lekesiz, Huseyin
    Computers in Biology and Medicine, 2024, 183
  • [26] In situ silver nanoparticle synthesis on 3D-printed polylactic acid scaffolds for biomedical applications
    Semih Calamak
    Menekse Ermis
    Journal of Materials Research, 2021, 36 : 166 - 175
  • [27] 3D-Printed Graphene/Polylactic Acid Electrodes Promise High Sensitivity in Electroanalysis
    Palenzuela, C. Lorena Manzanares
    Novotny, Filip
    Krupicka, Petr
    Sofer, Zdenek
    Pumera, Martin
    ANALYTICAL CHEMISTRY, 2018, 90 (09) : 5753 - 5757
  • [28] Physiologic Response Evaluation of Human Foetal Osteoblast Cells within Engineered 3D-Printed Polylactic Acid Scaffolds
    Rizzo, Maria Giovanna
    Palermo, Nicoletta
    Alibrandi, Paola
    Sciuto, Emanuele Luigi
    Del Gaudio, Costantino
    Filardi, Vincenzo
    Fazio, Barbara
    Caccamo, Antonella
    Oddo, Salvatore
    Calabrese, Giovanna
    Conoci, Sabrina
    BIOLOGY-BASEL, 2023, 12 (03):
  • [29] Improvement of the mechanical properties and osteogenic activity of 3D-printed polylactic acid porous scaffolds by nano-hydroxyapatite and nano-magnesium oxide
    Xu, Dian
    Xu, Zexian
    Cheng, Lidi
    Gao, Xiaohan
    Sun, Jian
    Chen, Liqiang
    HELIYON, 2022, 8 (06)
  • [30] A natural biomineral for enhancing the biomineralization and cell response of 3D printed polylactic acid bone scaffolds
    Guo, Feng
    Wang, Enyu
    Yang, Yanjuan
    Mao, Yufeng
    Liu, Chao
    Bu, Wenlang
    Li, Ping
    Zhao, Lei
    Jin, Qingxin
    Liu, Bin
    Wang, Shan
    You, Hui
    Long, Yu
    Zhou, Nuo
    Guo, Wang
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 242