A stabilized divergence-free virtual element scheme for the nematic liquid crystal flows

被引:4
|
作者
Wang, Xuyang [1 ]
Zou, Guang-An [1 ,2 ,3 ]
Wang, Bo [1 ,2 ,3 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Henan Univ, Henan Engn Res Ctr Artificial Intelligence Theory, Kaifeng 475004, Peoples R China
[3] Henan Univ, Henan Key Lab Earth Syst Observat & Modeling, Kaifeng 475004, Peoples R China
基金
中国博士后科学基金;
关键词
Nematic liquid crystal flows; VEM; Stabilized method; Error estimates; Numerical experiments; PHASE-FIELD MODEL; STOKES PROBLEM; APPROXIMATION; DYNAMICS;
D O I
10.1016/j.apnum.2023.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we propose and analyze a stabilized divergence-free virtual element method (VEM) for approximating the hydrodynamics system of nematic liquid crystal flows. By adding appropriate stabilization term so that the nonlinear potential function can be treated explicitly, and using the implicit-explicit (IMEX) approach to handle the nonlinear coupling terms, we develop a linear and energy-stable fully discrete virtual element scheme. We further prove that the fully discrete scheme is uniquely solvable and energy stable in discrete sense, moreover, we obtain the optimal error estimates rigorously. Finally, numerical examples are provided to demonstrate the accuracy, stability and efficiency of the proposed scheme.& COPY; 2023 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 131
页数:28
相关论文
共 50 条
  • [41] A lowest order divergence-free finite element on rectangular grids
    Yunqing Huang
    Shangyou Zhang
    Frontiers of Mathematics in China, 2011, 6 : 253 - 270
  • [42] A lowest order divergence-free finite element on rectangular grids
    Huang, Yunqing
    Zhang, Shangyou
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (02) : 253 - 270
  • [43] Statistical learning for fluid flows: Sparse Fourier divergence-free approximations
    Espath, Luis
    Kabanov, Dmitry
    Kiessling, Jonas
    Tempone, Raul
    PHYSICS OF FLUIDS, 2021, 33 (09)
  • [44] Divergence-free discontinuous Galerkin schemes for the Stokes equations and the MAC scheme
    Kanschat, Guido
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 56 (07) : 941 - 950
  • [45] Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy
    Feireisl, Eduard
    Schimperna, Giulio
    Rocca, Elisabetta
    Zarnescu, Arghir
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (05) : 1269 - 1299
  • [46] A Three-Order, Divergence-Free Scheme for the Simulation of Solar Wind
    Zhang, Man
    Feng, Xueshang
    UNIVERSE, 2022, 8 (07)
  • [47] An exactly divergence-free finite element method for a generalized Boussinesq problem
    Oyarzua, Ricardo
    Qin, Tong
    Schoetzau, Dominik
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (03) : 1104 - 1135
  • [48] A Divergence-Free Immersed Boundary Method and Its Finite Element Applications
    Zhou, Chuan
    Li, Jianhua
    Wang, Huaan
    Mu, Kailong
    Zhao, Lanhao
    JOURNAL OF MECHANICS, 2020, 36 (06) : 901 - 914
  • [49] Continuous interior penalty stabilization for divergence-free finite element methods
    Barrenechea, Gabriel R.
    Burman, Erik
    Caceres, Ernesto
    Guzman, Johnny
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (02) : 980 - 1002
  • [50] A divergence-free finite element method for the Stokes problem with boundary correction
    Liu, Haoran
    Neilan, Michael
    Baris Otus, M.
    JOURNAL OF NUMERICAL MATHEMATICS, 2023, 31 (02) : 105 - 123