A stabilized divergence-free virtual element scheme for the nematic liquid crystal flows

被引:4
|
作者
Wang, Xuyang [1 ]
Zou, Guang-An [1 ,2 ,3 ]
Wang, Bo [1 ,2 ,3 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Henan Univ, Henan Engn Res Ctr Artificial Intelligence Theory, Kaifeng 475004, Peoples R China
[3] Henan Univ, Henan Key Lab Earth Syst Observat & Modeling, Kaifeng 475004, Peoples R China
基金
中国博士后科学基金;
关键词
Nematic liquid crystal flows; VEM; Stabilized method; Error estimates; Numerical experiments; PHASE-FIELD MODEL; STOKES PROBLEM; APPROXIMATION; DYNAMICS;
D O I
10.1016/j.apnum.2023.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we propose and analyze a stabilized divergence-free virtual element method (VEM) for approximating the hydrodynamics system of nematic liquid crystal flows. By adding appropriate stabilization term so that the nonlinear potential function can be treated explicitly, and using the implicit-explicit (IMEX) approach to handle the nonlinear coupling terms, we develop a linear and energy-stable fully discrete virtual element scheme. We further prove that the fully discrete scheme is uniquely solvable and energy stable in discrete sense, moreover, we obtain the optimal error estimates rigorously. Finally, numerical examples are provided to demonstrate the accuracy, stability and efficiency of the proposed scheme.& COPY; 2023 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 131
页数:28
相关论文
共 50 条
  • [31] Nonisothermal nematic liquid crystal flows with the Ball–Majumdar free energy
    Eduard Feireisl
    Giulio Schimperna
    Elisabetta Rocca
    Arghir Zarnescu
    Annali di Matematica Pura ed Applicata (1923 -), 2015, 194 : 1269 - 1299
  • [32] Basis for high order divergence-free finite element spaces
    Rodriguez, A. Alonso
    Camano, J.
    De Los Santos, E.
    Rapetti, F.
    RESULTS IN APPLIED MATHEMATICS, 2024, 23
  • [33] Supercloseness of the Divergence-Free Finite Element Solutions on Rectangular Grids
    Huang Y.
    Zhang S.
    Communications in Mathematics and Statistics, 2013, 1 (2) : 143 - 162
  • [34] DIVERGENCE-FREE BASES FOR FINITE-ELEMENT SCHEMES IN HYDRODYNAMICS
    GUSTAFSON, K
    HARTMAN, R
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (04) : 697 - 721
  • [35] GLOBALLY DIVERGENCE-FREE DG SCHEME FOR IDEAL COMPRESSIBLE MHD
    Balsara, Dinshaw S.
    Kumar, Rakesh
    Chandrashekar, Praveen
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2021, 16 (01) : 59 - +
  • [36] A note on a lowest order divergence-free Stokes element on quadrilaterals
    Zhou, Xinchen
    Meng, Zhaoliang
    Fan, Xin
    Luo, Zhongxuan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (11) : 4008 - 4016
  • [37] Capillary Flows of Nematic Liquid Crystal
    Shmeliova, Dina V.
    Pasechnik, Sergey V.
    Kharlamov, Semen S.
    Zakharov, Alexandre V.
    Pozhidaev, Eugeny P.
    Barbashov, Vadim A.
    Tkachenko, Timofey P.
    CRYSTALS, 2020, 10 (11): : 1 - 16
  • [38] A divergence-free low-order stabilized finite element method for a generalized steady state Boussinesq problem
    Allendes, Alejandro
    Barrenechea, Gabriel R.
    Naranjo, Cesar
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 340 : 90 - 120
  • [39] A fully divergence-free finite element method for magnetohydrodynamic equations
    Hiptmair, Ralf
    Li, Lingxiao
    Mao, Shipeng
    Zheng, Weiying
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (04): : 659 - 695
  • [40] Divergence-free cut finite element methods for Stokes flow
    Frachon, Thomas
    Nilsson, Erik
    Zahedi, Sara
    BIT NUMERICAL MATHEMATICS, 2024, 64 (04)