A stabilized divergence-free virtual element scheme for the nematic liquid crystal flows

被引:4
|
作者
Wang, Xuyang [1 ]
Zou, Guang-An [1 ,2 ,3 ]
Wang, Bo [1 ,2 ,3 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Henan Univ, Henan Engn Res Ctr Artificial Intelligence Theory, Kaifeng 475004, Peoples R China
[3] Henan Univ, Henan Key Lab Earth Syst Observat & Modeling, Kaifeng 475004, Peoples R China
基金
中国博士后科学基金;
关键词
Nematic liquid crystal flows; VEM; Stabilized method; Error estimates; Numerical experiments; PHASE-FIELD MODEL; STOKES PROBLEM; APPROXIMATION; DYNAMICS;
D O I
10.1016/j.apnum.2023.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we propose and analyze a stabilized divergence-free virtual element method (VEM) for approximating the hydrodynamics system of nematic liquid crystal flows. By adding appropriate stabilization term so that the nonlinear potential function can be treated explicitly, and using the implicit-explicit (IMEX) approach to handle the nonlinear coupling terms, we develop a linear and energy-stable fully discrete virtual element scheme. We further prove that the fully discrete scheme is uniquely solvable and energy stable in discrete sense, moreover, we obtain the optimal error estimates rigorously. Finally, numerical examples are provided to demonstrate the accuracy, stability and efficiency of the proposed scheme.& COPY; 2023 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 131
页数:28
相关论文
共 50 条
  • [1] An extrapolated Crank-Nicolson virtual element scheme for the nematic liquid crystal flows
    Guang-an Zou
    Xuyang Wang
    Jian Li
    Advances in Computational Mathematics, 2023, 49
  • [2] An extrapolated Crank-Nicolson virtual element scheme for the nematic liquid crystal flows
    Zou, Guang-an
    Wang, Xuyang
    Li, Jian
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (03)
  • [3] THE DIVERGENCE-FREE NONCONFORMING VIRTUAL ELEMENT FOR THE STOKES PROBLEM
    Zhao, Jikun
    Zhang, Bei
    Mao, Shipeng
    Chen, Shaochun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (06) : 2730 - 2759
  • [4] A stabilization-free Virtual Element Method based on divergence-free projections
    Berrone, Stefano
    Borio, Andrea
    Marcon, Francesca
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 424
  • [5] Divergence-free tangential finite element methods for incompressible flows on surfaces
    Lederer, Philip L.
    Lehrenfeld, Christoph
    Schoeberl, Joachim
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (11) : 2503 - 2533
  • [6] A divergence-free reconstruction of the nonconforming virtual element method for the Stokes problem ?
    Liu, Xin
    Li, Rui
    Nie, Yufeng
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 372
  • [7] A Fully Divergence-Free Finite Element Scheme for Stationary Inductionless Magnetohydrodynamic Equations
    Zhang, Xiaodi
    Wang, Xiaorong
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (02)
  • [8] Divergence-Free Wavelet Analysis of Turbulent Flows
    Cem M. Albukrek
    Karsten Urban
    Dietmar Rempfer
    John L. Lumley
    Journal of Scientific Computing, 2002, 17 : 49 - 66
  • [9] The divergence-free nonconforming virtual element method for the Navier-Stokes problem
    Zhang, Bei
    Zhao, Jikun
    Li, Meng
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (03) : 1977 - 1995
  • [10] Divergence-Free Virtual Element Method for the Stokes Equations with Damping on Polygonal Meshes
    Xiong, Yu
    Chen, Yanping
    Zhou, Jianwei
    Liang, Qin
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2024, 17 (01): : 210 - 242