共 50 条
Large-scale preparation of ultrathin composite polymer electrolytes with excellent mechanical properties and high thermal stability for solid-state lithium-metal batteries
被引:31
|作者:
Liang, Qian
[1
]
Chen, Lining
[1
]
Tang, Junyan
[1
]
Liu, Xuezhi
[1
]
Liu, Junjie
[1
]
Tang, Mi
[1
]
Wang, Zhengbang
[1
]
机构:
[1] Hubei Univ, Collaborat Innovat Ctr Adv Organ Chem Mat Coconstr, Sch Mat Sci & Engn, Minist Educ,Key Lab Green Preparat & Applicat Func, Wuhan 430062, Peoples R China
基金:
中国博士后科学基金;
中国国家自然科学基金;
关键词:
Ultrathin solid-state electrolytes;
Fibre reinforcement;
Hot-pressing;
Large-scale preparation;
IONIC-CONDUCTIVITY;
PERSPECTIVES;
FRACTURE;
SAFE;
D O I:
10.1016/j.ensm.2022.12.039
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Large-scale preparation of ultrathin flexible solid-state electrolytes with high performance and low cost is critical for the commercialization of solid-state lithium-metal batteries. Herein, through a rational combination of the typical scraping and hot-pressing processes to impregnate polyethylene oxide (PEO)/Li-salt (LiTFSI) electrolyte into porous poly(tetrafluoroethylene) (PTFE) matrix, an ultrathin, highly dense composite polymer electrolyte (PLP-HP) has been successfully achieved. The hot-pressing process at appropriate temperature guarantees the densely impregnating of the PEO/LiTFSI conductive networks, and the enhancement effect of PTFE matrix ensures the excellent mechanical properties and the high thermal stability of the composite electrolyte with a thickness of 14.5 mu m or even lower to 6 mu m. As a result, the Li//Li symmetrical cell with the 14.5 mu m thick electrolyte shows a stable cycling time of more than 900 h at 60 degrees C without growth of Li dendrites and its LiFePO4//Li full cell can stably cycle more than 500 cycles with a superhigh average coulombic efficiency of over 99.9 % at 0.5 C and 60 degrees C. Furthermore, the full cell with the 6 mu m thick electrolyte even demonstrates more superior rate performance due to its much shorter Li+ diffusion distance, which enables the battery to operate at 30 degrees C with a reversible capacity of around 135 mAh g- 1 at 0.2 C. This study offers a guidance for the large-scale and low-cost preparation of high performance ultrathin composite polymer electrolytes.
引用
收藏
页码:847 / 856
页数:10
相关论文