Frugal day-ahead forecasting of multiple local electricity loads by aggregating adaptive models

被引:1
|
作者
Lambert, Guillaume [1 ]
Hamrouche, Bachir [1 ]
de Vilmarest, Joseph [2 ]
机构
[1] Elect France, R&D, F-91477 Palaiseau, France
[2] Viking Conseil, F-75007 Paris, France
关键词
CONSUMPTION;
D O I
10.1038/s41598-023-42488-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper focuses on day-ahead electricity load forecasting for substations of the distribution network in France; therefore, the corresponding problem lies between the instability of a single consumption and the stability of a countrywide total demand. Moreover, this problem requires to forecast the loads of over one thousand substations; consequently, it belongs to the field of multiple time series forecasting. To that end, the paper applies an adaptive methodology that provided excellent results at a national scale; the idea is to combine generalized additive models with state-space representations. However, extending this methodology to the prediction of over a thousand time series raises a computational issue. It is solved by developing a frugal variant that reduces the number of estimated parameters: forecasting models are estimated only for a few time series and transfer learning is achieved by relying on aggregation of experts. This approach yields a reduction of computational needs and their associated emissions. Several variants are built, corresponding to different levels of parameter transfer, to find the best trade-off between accuracy and frugality. The selected method achieves competitive results compared to individual models. Finally, the paper highlights the interpretability of the models, which is important for operational applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Neural Network Approaches to Electricity Price Forecasting in Day-Ahead Markets
    Rosato, Antonello
    Altilio, Rosa
    Araneo, Rodolfo
    Panella, Massimo
    2018 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2018 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2018,
  • [42] Day-Ahead Electricity Prices Forecasting Using Artificial Neural Networks
    Tang, Qi
    Gu, Danzhen
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL II, PROCEEDINGS, 2009, : 511 - 514
  • [43] Day-ahead electricity price analysis and forecasting by singular spectrum analysis
    Miranian, Arash
    Abdollahzade, Majid
    Hassani, Hossein
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2013, 7 (04) : 337 - 346
  • [44] An integrated machine learning model for day-ahead electricity price forecasting
    Fan, Shu
    Liao, James R.
    Kaneko, Kazuhiro
    Chen, Luonan
    2006 IEEE/PES POWER SYSTEMS CONFERENCE AND EXPOSITION. VOLS 1-5, 2006, : 1643 - +
  • [45] Simultaneous day-ahead forecasting of electricity price and load in smart grids
    Shayeghi, H.
    Ghasemi, A.
    Moradzadeh, M.
    Nooshyar, M.
    ENERGY CONVERSION AND MANAGEMENT, 2015, 95 : 371 - 384
  • [46] Day-ahead price forecasting of electricity markets by a hybrid intelligent system
    Amjady, Nima
    Hemmati, Meisam
    EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, 2009, 19 (01): : 89 - 102
  • [47] Electricity price forecasting on the day-ahead market using machine learning
    Tschora, Leonard
    Pierre, Erwan
    Plantevit, Marc
    Robardet, Celine
    APPLIED ENERGY, 2022, 313
  • [48] The Day-Ahead Electricity Price Forecasting Based on Stacked CNN and LSTM
    Xie, Xiaolong
    Xu, Wei
    Tan, Hongzhi
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING, 2018, 11266 : 216 - 230
  • [49] Forecasting the Day-Ahead Spinning Reserve Requirement in Competitive Electricity Market
    Pindoriya, N. A.
    Singh, N.
    Singh, S. K.
    2008 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-11, 2008, : 3697 - +
  • [50] Automated Variable Selection and Shrinkage for Day-Ahead Electricity Price Forecasting
    Uniejewski, Bartosz
    Nowotarski, Jakub
    Weron, Rafal
    ENERGIES, 2016, 9 (08)