Frugal day-ahead forecasting of multiple local electricity loads by aggregating adaptive models

被引:1
|
作者
Lambert, Guillaume [1 ]
Hamrouche, Bachir [1 ]
de Vilmarest, Joseph [2 ]
机构
[1] Elect France, R&D, F-91477 Palaiseau, France
[2] Viking Conseil, F-75007 Paris, France
关键词
CONSUMPTION;
D O I
10.1038/s41598-023-42488-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper focuses on day-ahead electricity load forecasting for substations of the distribution network in France; therefore, the corresponding problem lies between the instability of a single consumption and the stability of a countrywide total demand. Moreover, this problem requires to forecast the loads of over one thousand substations; consequently, it belongs to the field of multiple time series forecasting. To that end, the paper applies an adaptive methodology that provided excellent results at a national scale; the idea is to combine generalized additive models with state-space representations. However, extending this methodology to the prediction of over a thousand time series raises a computational issue. It is solved by developing a frugal variant that reduces the number of estimated parameters: forecasting models are estimated only for a few time series and transfer learning is achieved by relying on aggregation of experts. This approach yields a reduction of computational needs and their associated emissions. Several variants are built, corresponding to different levels of parameter transfer, to find the best trade-off between accuracy and frugality. The selected method achieves competitive results compared to individual models. Finally, the paper highlights the interpretability of the models, which is important for operational applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Day-Ahead Electricity Price Forecasting Using Artificial Intelligence
    Zhang, Jun
    Cheng, Chuntian
    2008 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE, 2008, : 156 - 160
  • [22] Day-ahead electricity price forecasting by a new hybrid method
    Zhang, Jinliang
    Tan, Zhongfu
    Yang, Shuxia
    COMPUTERS & INDUSTRIAL ENGINEERING, 2012, 63 (03) : 695 - 701
  • [23] Forecasting day-ahead electricity prices: Utilizing hourly prices
    Raviv, Eran
    Bouwman, Kees E.
    van Dijk, Dick
    ENERGY ECONOMICS, 2015, 50 : 227 - 239
  • [24] The value of day-ahead forecasting for photovoltaics in the Spanish electricity market
    Antonanzas, J.
    Pozo-Vazquez, D.
    Fernandez-Jimenez, L. A.
    Martinez-de-Pison, F. J.
    SOLAR ENERGY, 2017, 158 : 140 - 146
  • [25] Error Compensation Enhanced Day-Ahead Electricity Price Forecasting
    Kontogiannis, Dimitrios
    Bargiotas, Dimitrios
    Daskalopulu, Aspassia
    Arvanitidis, Athanasios Ioannis
    Tsoukalas, Lefteri H.
    ENERGIES, 2022, 15 (04)
  • [26] Day-Ahead Electricity Price Forecasting in the Contemporary Italian Market
    Moraglio, Francesco
    Ragusa, Carlo S.
    IEEE ACCESS, 2024, 12 : 72062 - 72078
  • [27] Application of GARCH model in the forecasting of day-ahead electricity prices
    Li, Chengjun
    Zhang, Ming
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 1, PROCEEDINGS, 2007, : 99 - +
  • [28] Day-Ahead Electricity Load Forecasting with Multivariate Time Series
    Crujido, Lorenz Jan C.
    Gozon, Clark Darwin M.
    Pallugna, Reuel C.
    MINDANAO JOURNAL OF SCIENCE AND TECHNOLOGY, 2023, 21 (02): : 95 - 115
  • [29] Framework for collaborative intelligence in forecasting day-ahead electricity price
    Beltran, Sergio
    Castro, Alain
    Irizar, Ion
    Naveran, Gorka
    Yeregui, Imanol
    APPLIED ENERGY, 2022, 306
  • [30] Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting
    Marcjasz, Grzegorz
    Serafin, Tomasz
    Weron, Rafal
    ENERGIES, 2018, 11 (09)