Integrating model development across computational neuroscience, cognitive science, and machine learning

被引:2
|
作者
Gleeson, Padraig [1 ]
Crook, Sharon [2 ]
Turner, David [3 ]
Mantel, Katherine [4 ]
Raunak, Mayank [5 ]
Willke, Ted [5 ]
Cohen, Jonathan D. [4 ]
机构
[1] UCL, Dept Neurosci, Physiol & Pharmacol, London, England
[2] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ USA
[3] Princeton Univ, Princeton Inst Computat Sci & Engn, Princeton, NJ USA
[4] Princeton Univ, Princeton Neurosci Inst, Princeton, NJ 08544 USA
[5] Intel Corp, Intel Labs, Hillsboro, OR USA
关键词
FORMAT;
D O I
10.1016/j.neuron.2023.03.037
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neuroscience, cognitive science, and computer science are increasingly benefiting through their interac-tions. This could be accelerated by direct sharing of computational models across disparate modeling soft-ware used in each. We describe a Model Description Format designed to meet this challenge.
引用
收藏
页码:1526 / 1530
页数:5
相关论文
共 50 条
  • [41] Theory of Mind and Preference Learning at the Interface of Cognitive Science, Neuroscience, and AI: A Review
    Langley, Christelle
    Cirstea, Bogdan Ionut
    Cuzzolin, Fabio
    Sahakian, Barbara J.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [42] Model-Based Cognitive Neuroscience Approaches to Computational Psychiatry: Clustering and Classification
    Wiecki, Thomas V.
    Poland, Jeffrey
    Frank, Michael J.
    CLINICAL PSYCHOLOGICAL SCIENCE, 2015, 3 (03) : 378 - 399
  • [43] Towards Replication in Computational Cognitive Modeling: a Machine Learning Perspective
    Emmery C.
    Kádár Á.
    Wiltshire T.J.
    Hendrickson A.T.
    Computational Brain & Behavior, 2019, 2 (3-4) : 242 - 246
  • [44] Provenance Data in the Machine Learning Lifecycle in Computational Science and Engineering
    Souza, Renan
    Azevedo, Leonardo
    Lourenco, Vitor
    Soares, Elton
    Thiago, Raphael
    Brandao, Rafael
    Civitarese, Daniel
    Brazil, Emilio Vital
    Moreno, Marcio
    Valduriez, Patrick
    Mattoso, Marta
    Cerqueira, Renato
    Netto, Marco A. S.
    PROCEEDINGS OF WORKS19: THE 2019 14TH IEEE/ACM WORKFLOWS IN SUPPORT OF LARGE-SCALE SCIENCE (WORKS), 2019, : 1 - 10
  • [45] Integrating Reinforcement Learning, Equilibrium Points, and Minimum Variance to Understand the Development of Reaching: A Computational Model
    Caligiore, Daniele
    Parisi, Domenico
    Baldassarre, Gianluca
    PSYCHOLOGICAL REVIEW, 2014, 121 (03) : 389 - 421
  • [46] Beyond the "Conceptual Nervous System": Can computational cognitive neuroscience transform learning theory?
    Soto, Fabian A.
    BEHAVIOURAL PROCESSES, 2019, 167
  • [47] Early Brain Development for Social Work Practice: Integrating Neuroscience with Piaget's Theory of Cognitive Development
    Lefmann, Tess
    Combs-Orme, Terri
    JOURNAL OF HUMAN BEHAVIOR IN THE SOCIAL ENVIRONMENT, 2013, 23 (05) : 640 - 647
  • [48] IMPACT OF COGNITIVE NEUROSCIENCE IN CORPORATE LEARNING AND DEVELOPMENT FOR SUSTAINABLE COMPETITIVE ADVANTAGE
    Jose, Julie
    Durai, F. R. Alexander Pravin
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (02) : 2308 - 2311
  • [49] Bridging across cognitive training and brain plasticity: a neurally inspired computational model of interactive skill learning
    Fu, Wai-Tat
    Lee, Hyunkyu
    Boot, Walter R.
    Kramer, Arthur F.
    WILEY INTERDISCIPLINARY REVIEWS-COGNITIVE SCIENCE, 2013, 4 (02) : 225 - 236
  • [50] Advancing social behavioral neuroscience by integrating ethology and comparative psychology methods through machine learning
    Bordes, Joeri
    Miranda, Lucas
    Mueller-Myhsok, Bertram
    Schmidt, Mathias V.
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2023, 151