Integrating model development across computational neuroscience, cognitive science, and machine learning

被引:2
|
作者
Gleeson, Padraig [1 ]
Crook, Sharon [2 ]
Turner, David [3 ]
Mantel, Katherine [4 ]
Raunak, Mayank [5 ]
Willke, Ted [5 ]
Cohen, Jonathan D. [4 ]
机构
[1] UCL, Dept Neurosci, Physiol & Pharmacol, London, England
[2] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ USA
[3] Princeton Univ, Princeton Inst Computat Sci & Engn, Princeton, NJ USA
[4] Princeton Univ, Princeton Neurosci Inst, Princeton, NJ 08544 USA
[5] Intel Corp, Intel Labs, Hillsboro, OR USA
关键词
FORMAT;
D O I
10.1016/j.neuron.2023.03.037
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neuroscience, cognitive science, and computer science are increasingly benefiting through their interac-tions. This could be accelerated by direct sharing of computational models across disparate modeling soft-ware used in each. We describe a Model Description Format designed to meet this challenge.
引用
收藏
页码:1526 / 1530
页数:5
相关论文
共 50 条
  • [21] Predicting rice phenology across China by integrating crop phenology model and machine learning
    Zhang, Jinhan
    Lin, Xiaomao
    Jiang, Chongya
    Hu, Xuntao
    Liu, Bing
    Liu, Leilei
    Xiao, Liujun
    Zhu, Yan
    Cao, Weixing
    Tang, Liang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 951
  • [22] Perceptual category learning and visual processing: An exercise in computational cognitive neuroscience
    Cantwell, George
    Riesenhuber, Maximilian
    Roeder, Jessica L.
    Ashby, Gregory
    NEURAL NETWORKS, 2017, 89 : 31 - 38
  • [23] Data-Driven Computational Neuroscience: Machine Learning and Statistical Models
    Kreinovich, Vladik
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (01) : 2513 - 2514
  • [24] Dopamine dependence in aggregate feedback learning: A computational cognitive neuroscience approach
    Valentin, Vivian V.
    Maddox, W. Todd
    Ashby, F. Gregory
    BRAIN AND COGNITION, 2016, 109 : 1 - 18
  • [25] A computational model of cognitive development for the motor skill learning from curiosity
    Ren, Hongge
    Liu, Chu
    Shi, Tao
    BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES, 2018, 25 : 101 - 106
  • [26] A generalized framework for integrating machine learning into computational fluid dynamics
    Sun, Xuxiang
    Cao, Wenbo
    Shan, Xianglin
    Liu, Yilang
    Zhang, Weiwei
    JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 82
  • [27] Ghosts in machine learning for cognitive neuroscience: Moving from data to theory
    Carlson, Thomas
    Goddard, Erin
    Kaplan, David M.
    Klein, Colin
    Ritchie, J. Brendan
    NEUROIMAGE, 2018, 180 : 88 - 100
  • [28] Machine-Learning Methods for Computational Science and Engineering
    Frank, Michael
    Drikakis, Dimitris
    Charissis, Vassilis
    COMPUTATION, 2020, 8 (01)
  • [29] Introduction to the Special Section on Theory and Data in Categorization: Integrating Computational, Behavioral, and Cognitive Neuroscience Approaches
    Lewandowsky, Stephan
    Palmeri, Thomas J.
    Waldmann, Michael R.
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY-LEARNING MEMORY AND COGNITION, 2012, 38 (04) : 803 - 806
  • [30] EVOLUTION, DEVELOPMENT AND LEARNING IN COGNITIVE SCIENCE
    LEISER, D
    BEHAVIORAL AND BRAIN SCIENCES, 1990, 13 (01) : 80 - &