Duality and statistical mirror symmetry in the generalized geometry setting

被引:1
|
作者
Blaga, Adara M. [1 ]
Nannicini, Antonella [2 ]
机构
[1] West Univ Timisoara, Dept Math, Bld V Parvan nr 4, Timisoara 300223, Romania
[2] Univ Florence, Dept Math & Informat U Dini, Viale Morgagni,67-a, I-50134 Florence, Italy
关键词
Statistical structure; quasi-statistical structure; semi-Weyl structure; quasi-semi-Weyl structure; dual and semi-dual connections; statistical mirror symmetry; generalized geometry;
D O I
10.2298/FIL2308577B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe statistical mirror symmetry, we introduce the notion of quasi-statistical mirror pairs and we give examples for certain quasi-statistical manifolds. As an application, we get families of almost Ka center dot hler structures on the tangent bundle manifold of almost complex 4-dimensional solvmanifolds without complex structures. Finally, we prove that statistical mirror symmetry can be understood in terms of generalized geometry.
引用
收藏
页码:2577 / 2586
页数:10
相关论文
共 50 条
  • [41] Mirror Symmetry for Perverse Schobers from Birational Geometry
    Donovan, W.
    Kuwagaki, T.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 381 (02) : 453 - 490
  • [42] Mirror symmetry for P2 and tropical geometry
    Gross, Mark
    ADVANCES IN MATHEMATICS, 2010, 224 (01) : 169 - 245
  • [43] Homological mirror symmetry, deformation quantization and noncommutative geometry
    Bressler, P
    Soibelman, Y
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (10) : 3972 - 3982
  • [44] T[SU(N)] duality webs: mirror symmetry, spectral duality and gauge/CFT correspondences
    Nedelin, Anton
    Pasquetti, Sara
    Zenkevich, Yegor
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (02)
  • [45] Conifold transitions via affine geometry and mirror symmetry
    Castano-Bernard, Ricardo
    Matessi, Diego
    GEOMETRY & TOPOLOGY, 2014, 18 (03) : 1769 - 1863
  • [46] Mirror symmetry ⇒ 2-view stereo geometry
    François, ARJ
    Medioni, GG
    Waupotitsch, R
    IMAGE AND VISION COMPUTING, 2003, 21 (02) : 137 - 143
  • [47] MIRROR SYMMETRY AND PROJECTIVE GEOMETRY OF REYE CONGRUENCES I
    Hosono, Shinobu
    Takagi, Hiromichi
    JOURNAL OF ALGEBRAIC GEOMETRY, 2014, 23 (02) : 279 - 312
  • [48] Exploration of the duality between generalized geometry and extraordinary magnetoresistance
    Rodriguez, Leo
    Rodriguez, Shanshan
    Bharadwaj, Sathwik
    Ram-Mohan, L. R.
    PHYSICAL REVIEW B, 2020, 101 (17)
  • [49] T-duality, quotients and generalized Kahler geometry
    Merrell, Willie
    Vaman, Diana
    PHYSICS LETTERS B, 2008, 665 (05) : 401 - 408
  • [50] T duality and hints of generalized geometry in string α' corrections
    David, Marina
    Liu, James T.
    PHYSICAL REVIEW D, 2022, 106 (10)