Duality and statistical mirror symmetry in the generalized geometry setting

被引:1
|
作者
Blaga, Adara M. [1 ]
Nannicini, Antonella [2 ]
机构
[1] West Univ Timisoara, Dept Math, Bld V Parvan nr 4, Timisoara 300223, Romania
[2] Univ Florence, Dept Math & Informat U Dini, Viale Morgagni,67-a, I-50134 Florence, Italy
关键词
Statistical structure; quasi-statistical structure; semi-Weyl structure; quasi-semi-Weyl structure; dual and semi-dual connections; statistical mirror symmetry; generalized geometry;
D O I
10.2298/FIL2308577B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe statistical mirror symmetry, we introduce the notion of quasi-statistical mirror pairs and we give examples for certain quasi-statistical manifolds. As an application, we get families of almost Ka center dot hler structures on the tangent bundle manifold of almost complex 4-dimensional solvmanifolds without complex structures. Finally, we prove that statistical mirror symmetry can be understood in terms of generalized geometry.
引用
收藏
页码:2577 / 2586
页数:10
相关论文
共 50 条
  • [21] Homological mirror symmetry is T-duality for Pn
    Fang, Bohan
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2008, 2 (04) : 719 - 742
  • [23] Generalized Homological Mirror Symmetry and cubics
    L. Katzarkov
    V. Przyjalkowski
    Proceedings of the Steklov Institute of Mathematics, 2009, 264 : 87 - 95
  • [24] Generalized Homological Mirror Symmetry and cubics
    Katzarkov, L.
    Przyjalkowski, V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 264 (01) : 87 - 95
  • [25] Generalized mirror symmetry and trace anomalies
    Duff, M. J.
    Ferrara, S.
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (06)
  • [26] Generalized contact geometry and T-duality
    Aldi, Marco
    Grandini, Daniele
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 92 : 78 - 93
  • [27] Generalized Complex Geometry and T-Duality
    Cavalcanti, Gil R.
    Gualtieri, Marco
    CELEBRATION OF THE MATHEMATICAL LEGACY OF RAOUL BOTT, 2010, 50 : 341 - +
  • [28] T-duality and generalized complex geometry
    Persson, Jonas
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (03):
  • [29] T-duality and generalized Kahler geometry
    Lindstroem, Ulf
    Rocek, Martin
    Ryb, Itai
    von Unge, Rikard
    Zabzine, Maxim
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (02):
  • [30] Gauge symmetry, T-duality and doubled geometry
    Hull, C. M.
    Reid-Edwards, R. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (08):