Covering Point-Sets with Parallel Hyperplanes and Sparse Signal Recovery

被引:2
|
作者
Fukshansky, Lenny [1 ]
Hsu, Alexander [1 ]
机构
[1] Claremont McKenna Coll, Dept Math, 850 Columbia Ave, Claremont, CA 91711 USA
关键词
Covering; Hyperplane; Integer cube; Sensing matrix; Sparse recovery; Tarski's plank problem; GRAPHS;
D O I
10.1007/s00454-022-00375-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a new deterministic construction of integer sensing matrices that can be used for the recovery of integer-valued signals in compressed sensing. This is a family of n x d integer matrices, d >= n, with bounded sup-norm and the property that no l column vectors are linearly dependent, l <= n. Further, if l <= o(log n) then d/n -> infinity as n -> infinity. Our construction comes from particular sets of difference vectors of point- sets in R-n that cannot be covered by few parallel hyperplanes. We construct examples of such sets on the 0, +/- 1 grid and use them for the matrix construction. We also show a connection of our constructions to a simple version of the Tarski's plank problem.
引用
收藏
页码:919 / 930
页数:12
相关论文
共 50 条
  • [1] Covering Point-Sets with Parallel Hyperplanes and Sparse Signal Recovery
    Lenny Fukshansky
    Alexander Hsu
    [J]. Discrete & Computational Geometry, 2023, 69 : 919 - 930
  • [2] New method for sparse point-sets matching with underlying non-rigidity
    Li, BH
    Meng, QG
    Holstein, H
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, 2004, : 8 - 11
  • [3] Universal groups for point-sets and tilings
    Kellendonk, J
    Lawson, MV
    [J]. JOURNAL OF ALGEBRA, 2004, 276 (02) : 462 - 492
  • [4] On Point-Sets That Support Planar Graphs
    Dujmovic, Vida
    Evans, William
    Lazard, Sylvain
    Lenhart, William
    Liotta, Giuseppe
    Rappaport, David
    Wismath, Stephen
    [J]. GRAPH DRAWING, 2012, 7034 : 64 - +
  • [5] On point-sets that support planar graphs
    Dujmovic, V.
    Evans, W.
    Lazard, S.
    Lenhart, W.
    Liotta, G.
    Rappaport, D.
    Wismath, S.
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (01): : 29 - 50
  • [6] Self-projective point-sets
    Bottema, O
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN, 1940, 43 (1/5): : 591 - 598
  • [7] A class of point-sets with few k-sets
    Alt, H
    Felsner, S
    Hurtado, F
    Noy, M
    Welzl, E
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2000, 16 (02): : 95 - 101
  • [8] Efficient approximation algorithms for clustering point-sets
    Xu, Guang
    Xu, Jinhui
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2010, 43 (01): : 59 - 66
  • [9] On large equilateral point-sets in normed spaces
    Bernardo González Merino
    [J]. Archiv der Mathematik, 2020, 114 : 553 - 559
  • [10] Small Point-Sets Supporting Graph Stories
    Di Battista, Giuseppe
    Didimo, Walter
    Grilli, Luca
    Grosso, Fabrizio
    Ortali, Giacomo
    Patrignani, Maurizio
    Tappini, Alessandra
    [J]. GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2022, 2023, 13764 : 289 - 303