Fully automated approach of machine learning combined with deep learning: How to predict the onset of major cardiovascular events in NAFLD patients

被引:1
|
作者
Cirella, A. [1 ]
Sinatti, G. [1 ]
Bracci, A. [2 ]
Evangelista, L. [2 ]
Bruno, P. [3 ]
Santini, S. J. [1 ]
Greco, G. [3 ]
Guzzo, A. [3 ]
Calimeri, F. [3 ]
Di Cesare, E. [2 ]
Balsano, C. [1 ]
机构
[1] Univ Aquila, Dept Clin Med Iife Hlth & Environm Sci MESVA, Laquila, Italy
[2] Univ Aquila, Dept Appl Clin Sci & Biotechnol, Laquila, Italy
[3] Univ Calabria, Dept Math & Comp Sci, Cosenza, Italy
关键词
D O I
10.1016/j.dld.2023.01.061
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
T-29
引用
收藏
页码:S32 / S32
页数:1
相关论文
共 50 条
  • [1] Machine learning combined with Deep learning approach to forecast the onset of major cardiovascular events in NAFLD asymptomatic patients
    Cirella, A.
    Sinatti, G.
    Bracci, A.
    Evangelista, L.
    Bruno, P.
    Santini, S. J.
    Greco, G.
    Guzzo, A.
    Di Cesare, E.
    Balsano, C.
    DIGESTIVE AND LIVER DISEASE, 2022, 54 : S168 - S168
  • [2] Machine learning algorithms to predict major adverse cardiovascular events in patients with diabetes
    Abegaz, Tadesse M.
    Baljoon, Ahmead
    Kilanko, Oluwaseun
    Sherbeny, Fatimah
    Ali, Askal Ayalew
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 164
  • [3] MACHINE LEARNING APPROACH TO PREDICT CARDIOVASCULAR DISEASES IN PATIENTS WITH NAFLD IN THE UK BIOBANK COHORT
    Gotlieb, Neta
    Sharma, Divya
    Farkouh, Michael
    Patel, Keyur
    Xu, Wei
    Bhat, Mamatha
    HEPATOLOGY, 2021, 74 : 963A - 964A
  • [4] Machine Learning Approaches to Predict Major Adverse Cardiovascular Events in Atrial Fibrillation
    Molto-Balado, Pedro
    Reverte-Villarroya, Silvia
    Alonso-Barberan, Victor
    Monclus-Arasa, Cinta
    Balado-Albiol, Maria Teresa
    Clua-Queralt, Josep
    Clua-Espuny, Josep-Lluis
    TECHNOLOGIES, 2024, 12 (02)
  • [5] Fully automated approach of machine learning combined with deep learning to forecast the coronary artery disease in patients with non-alcoholic fatty liver disease
    Cirella, Antonio
    Sinatti, Gaia
    Bracci, Angelica
    Evangelista, Laura
    Bruno, Pierangela
    Santini, Silvano Junior
    Greco, Gianluigi
    Guzzo, Antonella
    Calimeri, Francesco
    di Cesare, Ernesto
    Balsano, Clara
    JOURNAL OF HEPATOLOGY, 2023, 78 : S685 - S685
  • [6] Machine learning models to predict onset of dementia: A label learning approach
    Nori, Vijay S.
    Hane, Christopher A.
    Crown, William H.
    Au, Rhoda
    Burke, William J.
    Sanghavi, Darshak M.
    Bleicher, Paul
    ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS, 2019, 5 (01) : 918 - 925
  • [7] Fully automated learning and predict price of aquatic products in Taiwan wholesale markets using multiple machine learning and deep learning methods
    Lai, Yi-Ting
    Peng, Yan-Tsung
    Lien, Wei-Cheng
    Cheng, Yun-Chiao
    Lin, Yi-Ting
    Liao, Chen-Jie
    Chiu, Yu-Shao
    AQUACULTURE, 2024, 586
  • [8] Machine learning using cardiovascular magnetic resonance to predict cardiovascular events in patients with acute myocarditis
    Pfeffer, A.
    Pezel, T.
    Toupin, S.
    Garot, P.
    Hovasse, T.
    Sanguineti, F.
    Di Lena, C.
    Renard, C.
    Tribouilloy, C.
    Hamzi, K.
    Goncalves, T.
    Dillinger, J. G.
    Henry, P.
    Bohbot, Y.
    Garot, P.
    EUROPEAN HEART JOURNAL, 2023, 44
  • [9] Fully automated esophagus segmentation with a hierarchical deep learning approach
    Trullo, Roger
    Petitjean, Caroline
    Nie, Dong
    Shen, Dinggang
    Ruan, Su
    2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (ICSIPA), 2017, : 503 - 506
  • [10] Unconstrained face detection: a Deep learning and Machine learning combined approach
    Dattatray D. Sawat
    Ravindra S. Hegadi
    CSI Transactions on ICT, 2017, 5 (2) : 195 - 199