Fully automated approach of machine learning combined with deep learning: How to predict the onset of major cardiovascular events in NAFLD patients

被引:1
|
作者
Cirella, A. [1 ]
Sinatti, G. [1 ]
Bracci, A. [2 ]
Evangelista, L. [2 ]
Bruno, P. [3 ]
Santini, S. J. [1 ]
Greco, G. [3 ]
Guzzo, A. [3 ]
Calimeri, F. [3 ]
Di Cesare, E. [2 ]
Balsano, C. [1 ]
机构
[1] Univ Aquila, Dept Clin Med Iife Hlth & Environm Sci MESVA, Laquila, Italy
[2] Univ Aquila, Dept Appl Clin Sci & Biotechnol, Laquila, Italy
[3] Univ Calabria, Dept Math & Comp Sci, Cosenza, Italy
关键词
D O I
10.1016/j.dld.2023.01.061
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
T-29
引用
收藏
页码:S32 / S32
页数:1
相关论文
共 50 条
  • [21] NOVEL MACHINE LEARNING MODEL TO PREDICT NASH IN NAFLD PATIENTS WITH DIABETES MELLITUS
    Aggarwal, Manik
    Singh, Amandeep
    Bansal, Agam
    McCullough, Arthur J.
    HEPATOLOGY, 2020, 72 : 932A - 933A
  • [22] A Machine Learning Model to Predict Cardiovascular Events during Exercise Evaluation in Patients with Coronary Heart Disease
    Shen, Tao
    Liu, Dan
    Lin, Zi
    Ren, Chuan
    Zhao, Wei
    Gao, Wei
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (20)
  • [23] Using machine learning to predict one-year cardiovascular events in patients with severe dilated cardiomyopathy
    Chen, Rui
    Lu, Aijia
    Wang, Jingjing
    Ma, Xiaohai
    Zhao, Lei
    Wu, Wanjia
    Du, Zhicheng
    Fei, Hongwen
    Lin, Qiongwen
    Yu, Zhuliang
    Liu, Hui
    EUROPEAN JOURNAL OF RADIOLOGY, 2019, 117 : 178 - 183
  • [24] Machine learning prediction of postoperative major adverse cardiovascular events in geriatric patients: a prospective cohort study
    Xiran Peng
    Tao Zhu
    Tong Wang
    Fengjun Wang
    Ke Li
    Xuechao Hao
    BMC Anesthesiology, 22
  • [25] Machine learning prediction of postoperative major adverse cardiovascular events in geriatric patients: a prospective cohort study
    Peng, Xiran
    Zhu, Tao
    Wang, Tong
    Wang, Fengjun
    Li, Ke
    Hao, Xuechao
    BMC ANESTHESIOLOGY, 2022, 22 (01)
  • [26] Development and validation of an interpretable machine learning model to predict major adverse cardiovascular events after noncardiac surgery in geriatric patients: a prospective study
    Yu, Jiayu
    Peng, Xiran
    Zhou, Ruihao
    Zhu, Tao
    Hao, Xuechao
    INTERNATIONAL JOURNAL OF SURGERY, 2025, 111 (02) : 1939 - 1949
  • [27] Development and Validation of Machine-Learning Model to Predict the Risk of Major Cardiovascular Events and Death for Patients with Kidney Failure Having Noncardiac Surgery
    Pabla, Gurpreet S.
    Tangri, Navdeep
    Harrison, Tyrone
    Ferguson, Thomas W.
    Sevinc, Emir
    Whitlock, Reid
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2024, 35 (10):
  • [28] Machine learning and deep learning to predict mortality in patients with spontaneous coronary artery dissection
    Chayakrit Krittanawong
    Hafeez Ul Hassan Virk
    Anirudh Kumar
    Mehmet Aydar
    Zhen Wang
    Matthew P. Stewart
    Jonathan L. Halperin
    Scientific Reports, 11
  • [29] MACHINE LEARNING AND DEEP LEARNING TO PREDICT MORTALITY IN PATIENTS WITH SPONTANEOUS CORONARY ARTERY DISSECTION
    Krittanawong, Chayakrit
    Kumar, Anirudh
    Aydar, Mehmet
    Wang, Zhen
    Stewart, Matthew P.
    Baber, Usman
    Halperin, Jonathan
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (18) : 3412 - 3412
  • [30] Machine learning and deep learning to predict mortality in patients with spontaneous coronary artery dissection
    Krittanawong, Chayakrit
    Virk, Hafeez Ul Hassan
    Kumar, Anirudh
    Aydar, Mehmet
    Wang, Zhen
    Stewart, Matthew P.
    Halperin, Jonathan L.
    SCIENTIFIC REPORTS, 2021, 11 (01) : 8992