Machine learning combined with Deep learning approach to forecast the onset of major cardiovascular events in NAFLD asymptomatic patients

被引:0
|
作者
Cirella, A. [1 ]
Sinatti, G. [1 ]
Bracci, A. [2 ]
Evangelista, L. [2 ]
Bruno, P. [3 ]
Santini, S. J. [1 ]
Greco, G. [3 ]
Guzzo, A. [1 ,2 ,3 ]
Di Cesare, E. [2 ]
Balsano, C. [1 ]
机构
[1] Univ Aquila, Dept Clin Med Life Hlth & Environm Sci MESVA, Laquila, Italy
[2] Univ Aquila, Dept Appl Clin Sci & Biotechnol, Laquila, Italy
[3] Univ Calabria, Arcavacata Di Rende, Italy
关键词
D O I
10.1016/j.dld.2022.08.009
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
OC-08
引用
收藏
页码:S168 / S168
页数:1
相关论文
共 50 条
  • [1] Fully automated approach of machine learning combined with deep learning: How to predict the onset of major cardiovascular events in NAFLD patients
    Cirella, A.
    Sinatti, G.
    Bracci, A.
    Evangelista, L.
    Bruno, P.
    Santini, S. J.
    Greco, G.
    Guzzo, A.
    Calimeri, F.
    Di Cesare, E.
    Balsano, C.
    DIGESTIVE AND LIVER DISEASE, 2023, 55 : S32 - S32
  • [2] Machine learning algorithms to predict major adverse cardiovascular events in patients with diabetes
    Abegaz, Tadesse M.
    Baljoon, Ahmead
    Kilanko, Oluwaseun
    Sherbeny, Fatimah
    Ali, Askal Ayalew
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 164
  • [3] MACHINE LEARNING APPROACH TO PREDICT CARDIOVASCULAR DISEASES IN PATIENTS WITH NAFLD IN THE UK BIOBANK COHORT
    Gotlieb, Neta
    Sharma, Divya
    Farkouh, Michael
    Patel, Keyur
    Xu, Wei
    Bhat, Mamatha
    HEPATOLOGY, 2021, 74 : 963A - 964A
  • [4] Machine learning model using cardiovascular magnetic resonance to predict cardiovascular events in asymptomatic patients with known CAD
    Amar, J.
    Garot, J.
    Toupin, S.
    Unger, A.
    Goncalves, T.
    Duhamel, S.
    Garot, P.
    Unterseeh, T.
    Champagne, S.
    Hovasse, T.
    Dillinger, J. G.
    Henry, P.
    Bousson, V
    Sanguineti, F.
    Pezel, T.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [5] Unconstrained face detection: a Deep learning and Machine learning combined approach
    Dattatray D. Sawat
    Ravindra S. Hegadi
    CSI Transactions on ICT, 2017, 5 (2) : 195 - 199
  • [6] A Deep Learning-Based Approach to Forecast the Onset of Magnetic Substorms
    Maimaiti, M.
    Kunduri, B.
    Ruohoniemi, J. M.
    Baker, J. B. H.
    House, Leanna L.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2019, 17 (11): : 1534 - 1552
  • [7] Fully automated approach of machine learning combined with deep learning to forecast the coronary artery disease in patients with non-alcoholic fatty liver disease
    Cirella, Antonio
    Sinatti, Gaia
    Bracci, Angelica
    Evangelista, Laura
    Bruno, Pierangela
    Santini, Silvano Junior
    Greco, Gianluigi
    Guzzo, Antonella
    Calimeri, Francesco
    di Cesare, Ernesto
    Balsano, Clara
    JOURNAL OF HEPATOLOGY, 2023, 78 : S685 - S685
  • [8] Machine-Learning Approaches for Major Adverse Cardiovascular Events (MACE) Prediction in Patients on Hemodialysis
    Chen Cheng-Hsu
    Hou Shun Fang
    Wang Min-Shian
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2024, 35 (10):
  • [9] Cervical Cancer Classification Using Combined Machine Learning and Deep Learning Approach
    Alquran, Hiam
    Mustafa, Wan Azani
    Abu Qasmieh, Isam
    Yacob, Yasmeen Mohd
    Alsalatie, Mohammed
    Al-Issa, Yazan
    Alqudah, Ali Mohammad
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03): : 5117 - 5134
  • [10] Machine Learning Approaches to Predict Major Adverse Cardiovascular Events in Atrial Fibrillation
    Molto-Balado, Pedro
    Reverte-Villarroya, Silvia
    Alonso-Barberan, Victor
    Monclus-Arasa, Cinta
    Balado-Albiol, Maria Teresa
    Clua-Queralt, Josep
    Clua-Espuny, Josep-Lluis
    TECHNOLOGIES, 2024, 12 (02)