In Situ Confined Growth of Co3O4-TiO2/C S-Scheme Nanoparticle Heterojunction for Boosted Photocatalytic CO2 Reduction

被引:13
|
作者
Liu, Haibing [1 ]
Chen, Kaihang [1 ]
Feng, Ya-Nan [1 ]
Zhuang, Zanyong [1 ]
Chen, Fei-Fei [1 ]
Yu, Yan [1 ]
机构
[1] Fuzhou Univ, Coll Mat Sci & Engn, Key Lab Adv Mat Technol, Int HongKong Macao & Taiwan Joint Lab Adv Mat Tech, Fuzhou 350108, Fujian, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2023年 / 127卷 / 11期
基金
中国国家自然科学基金;
关键词
P-N HETEROJUNCTION; EFFICIENT; MXENE; HETEROSTRUCTURES; FABRICATION; NANOSHEETS;
D O I
10.1021/acs.jpcc.2c08369
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An S-scheme nanoparticle heterojunction of Co3O4-TiO2/C has been designed to enhance CO2 adsorption and accelerate interfacial electron transfer, thereby boosting photocatalytic CO2 reduction. Co2+-loaded MXene nanosheets are used as a single precursor for in situ confined growth of Co3O4-TiO2/C. The in situ confined growth of the nanoparticle heterojunction enables good particle dispersion and a small particle size, which makes the surface and active sites highly exposed and accessible for CO2 molecules. In addition, p-type Co3O4 and n type TiO2 build an S-scheme heterojunction. As a result, the Co3O4-TiO2/C nanoparticle heterojunction exhibits a higher specific surface area, larger CO2 adsorption capacity, and faster charge transfer compared to pure Co3O4 and TiO2/C. The gas generation rate over Co3O4-TiO2/C is as high as 33.21 mmol g-1 h-1, which is 8.34 and 1.69 times higher than that of pure TiO2/C and Co3O4, respectively. 3 h photocatalysis affords a remarkable turnover number of 15.53 that is comparable to state-of-the-art photocatalysts.
引用
收藏
页码:5289 / 5298
页数:10
相关论文
共 50 条
  • [31] Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method
    Song, Mingming
    Song, Xianghai
    Liu, Xin
    Zhou, Weiqiang
    Huo, Pengwei
    CHINESE JOURNAL OF CATALYSIS, 2023, 51 : 180 - 192
  • [32] S-scheme heterojunction Cu-porphyrin/TiO2 nanosheets with highly efficient photocatalytic reduction of CO2 in ambient air
    Yue, Feng
    Shi, Mengke
    Li, Cong
    Meng, Yang
    Zhang, Shuo
    Wang, Lan
    Song, Yali
    Li, Jun
    Zhang, Hongzhong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 665 : 1079 - 1090
  • [33] Bi2WO6/C3N4 S-Scheme Heterojunction with a Built-In Electric Field for Photocatalytic CO2 Reduction
    Tang, Qiaoya
    Tao, Wei
    Hu, Jianqiang
    Gui, Tian
    Wang, Zhipeng
    Xiao, Yuting
    Song, Renjie
    Jiang, Yong
    Guo, Shien
    ACS APPLIED NANO MATERIALS, 2023, 6 (18) : 17130 - 17139
  • [34] A dual defect co-modified S-scheme heterojunction for boosting photocatalytic CO2 reduction coupled with tetracycline oxidation
    Jia, Xuemei
    Hu, Cheng
    Sun, Haoyu
    Cao, Jing
    Lin, Haili
    Li, Xinyue
    Chen, Shifu
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 324
  • [35] Photocatalytic reduction of CO2 and degradation of Bisphenol-S by g-C3N4/Cu2O@Cu S-scheme heterojunction: Study on the photocatalytic performance and mechanism insight
    Dai, Benlin
    Zhao, Wei
    Wei, Wei
    Cao, Jihui
    Yang, Gang
    Li, Shijie
    Sun, Cheng
    Leung, Dennis Y. C.
    CARBON, 2022, 193 : 272 - 284
  • [36] Plasmon enhanced Sn:In2O3/attapulgite S-scheme heterojunction for efficient photothermal reduction of CO2
    Cao, Guangbiao
    Ye, Xuhua
    Duan, Shijin
    Cao, Ziwen
    Zhang, Chunyan
    Yao, Chao
    Li, Xiazhang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 656
  • [37] Photothermal Conversion Boosted Photocatalytic CO2 Reduction over S-Scheme CeO2@Cu-TCPP: In Situ Experiments and DFT Calculations
    Zhang, Na
    Luo, You-Guo
    Chen, Yan-He
    Zhang, Jian-Yong
    Wang, Haozhi
    Liu, Zhen-Jiang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (12) : 4813 - 4824
  • [38] Photocatalytic reduction of CO2 and degradation of Bisphenol-S by g-C3N4/Cu2O@Cu S-scheme heterojunction: Study on the photocatalytic performance and mechanism insight
    Dai, Benlin
    Zhao, Wei
    Wei, Wei
    Cao, Jihui
    Yang, Gang
    Li, Shijie
    Sun, Cheng
    Leung, Dennis Y.C.
    Carbon, 2022, 193 : 272 - 284
  • [39] Graphitic carbon nitride/La, Rh co-doped SrTiO3 S-scheme heterojunction for photocatalytic CO2 reduction
    Wan, Si-Jie
    Hou, Yan-Ting
    Wang, Wang
    Luo, Guo-Qiang
    Wang, Chuan-Bin
    Tu, Rong
    Cao, Shao-Wen
    RARE METALS, 2024, 43 (11) : 5880 - 5890