Bi2WO6/C3N4 S-Scheme Heterojunction with a Built-In Electric Field for Photocatalytic CO2 Reduction

被引:11
|
作者
Tang, Qiaoya [1 ]
Tao, Wei [1 ]
Hu, Jianqiang [1 ]
Gui, Tian [1 ]
Wang, Zhipeng [1 ]
Xiao, Yuting [2 ]
Song, Renjie [2 ]
Jiang, Yong [3 ]
Guo, Shien [1 ]
机构
[1] Jiangxi Normal Univ, Inst Adv Mat IAM, Coll Chem & Chem Engn, Nanchang 330022, Peoples R China
[2] Nanchang Hangkong Univ, Key Lab Jiangxi Prov Persistent Pollutants Contro, Nanchang 330063, Peoples R China
[3] Guangxi Univ Sci & Technol, Coll Biol & Chem Engn, Liuzhou 545006, Peoples R China
基金
中国国家自然科学基金;
关键词
Bi2WO6/C3N4; S-scheme; 2D/2D heterojunction; interfacialchargetransfer; photocatalytic CO2 reduction; CARBON NITRIDE; CONSTRUCTION; MORPHOLOGY; G-C3N4; WATER;
D O I
10.1021/acsanm.3c03349
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Converting CO2 into renewable fuels by solar energy has been considered an ideal strategy to mitigate the climate crisis and address the fossil fuel depletion problem. However, severe charge carrier recombination and sluggish interfacial reaction dynamics make it a challenge to achieve high conversion efficiency. Herein, a unique 2D/2D step-scheme (S-scheme) photocatalyst of Bi2WO6/C3N4 (BWO/CN) is constructed by a facile electrostatic self-assembly strategy. The ultrathin 2D/2D heterostructure endowed the BWO/ CN hybrid with abundant contact interfaces, short charge-transport distance, and relatively more accessible reaction sites. Besides, the differences of work function between CN and BWO induced the formation of a built-in electric field, resulting in much enhanced interfacial charge transfer/separation rates. As a result, the optimized BWO/CN heterojunction exhibits significantly improved photocatalytic performance toward CO2 reduction, which is approximately 2.8-fold higher than that of its CN counterpart. The accelerated S-scheme charge-transfer mechanism is systematically corroborated by X-ray photoelectron spectroscopy, photo-irradiated Kelvin probe force microscopy, and electron spin resonance. This research may provide a facile protocol for the rational design of an S-scheme face-to-face 2D/2D heterojunction for efficient CO2 conversion.
引用
收藏
页码:17130 / 17139
页数:10
相关论文
共 50 条
  • [1] Construction of a hierarchical BiOBr/C3N4 S-scheme heterojunction for selective photocatalytic CO2 reduction towards CO
    Tao, Wei
    Tang, Qiaoya
    Hu, Jianqiang
    Wang, Zhipeng
    Jiang, Baojiang
    Xiao, Yuting
    Song, Renjie
    Guo, Shien
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (45) : 24999 - 25007
  • [2] Nanoengineering construction of g-C3N4/Bi2WO6 S-scheme heterojunctions for cooperative enhanced photocatalytic CO2 reduction and pollutant degradation
    Zhang, Bingke
    Liu, Yaxin
    Wang, Dongbo
    He, Wen
    Fang, Xuan
    Zhao, Chenchen
    Pan, Jingwen
    Liu, Donghao
    Liu, Sihang
    Chen, Tianyuan
    Zhao, Liancheng
    Wang, Jinzhong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [3] MAPbBr3/Bi2WO6 Z-scheme-heterojunction photocatalysts for photocatalytic CO2 reduction
    Yawen Zhang
    Njemuwa Nwaji
    Lihua Wu
    Mingliang Jin
    Jaebeom Lee
    Guofu Zhou
    Michael Giersig
    Xin Wang
    Tengfei Qiu
    Eser Metin Akinoglu
    Journal of Materials Science, 2024, 59 : 1498 - 1512
  • [4] MAPbBr3/Bi2WO6 Z-scheme-heterojunction photocatalysts for photocatalytic CO2 reduction
    Zhang, Yawen
    Nwaji, Njemuwa
    Wu, Lihua
    Jin, Mingliang
    Lee, Jaebeom
    Zhou, Guofu
    Giersig, Michael
    Wang, Xin
    Qiu, Tengfei
    Akinoglu, Eser Metin
    JOURNAL OF MATERIALS SCIENCE, 2024, 59 (04) : 1498 - 1512
  • [5] Engineering Built-In Electric Field Microenvironment of CQDs/g-C3N4 Heterojunction for Efficient Photocatalytic CO2 Reduction
    Xu, Yun
    Hou, Weidong
    Huang, Kai
    Guo, Huazhang
    Wang, Zeming
    Lian, Cheng
    Zhang, Jiye
    Wu, Deli
    Lei, Zhendong
    Liu, Zheng
    Wang, Liang
    ADVANCED SCIENCE, 2024, 11 (28)
  • [6] Rational Design of an Efficient S-Scheme Heterojunction of CdS/Bi2WO6-S Nanocomposites for Photocatalytic CO2 Reduction
    Hao, Mingming
    Wei, Dingqiong
    Li, Zhaohui
    ENERGY & FUELS, 2022, 36 (19) : 11524 - 11531
  • [7] Ultrasonic-assisted fabrication of Cs2AgBiBr6/Bi2WO6 S-scheme heterojunction for photocatalytic CO2 reduction under visible light
    Wang, Jiaqi
    Cheng, Hao
    Wei, Dingqiong
    Li, Zhaohui
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (10) : 2606 - 2614
  • [8] Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite for efficient water decontamination
    Cai, Mingjie
    Liu, Yanping
    Dong, Kexin
    Chen, Xiaobo
    Li, Shijie
    CHINESE JOURNAL OF CATALYSIS, 2023, 52 : 239 - 251
  • [9] CdS/WO3 S-scheme heterojunction with improved photocatalytic CO2 reduction activity
    Sun, Yuzhen
    Han, Yuting
    Song, Xinyu
    Huang, Bing
    Ma, Xinlong
    Xing, Rong
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2022, 233
  • [10] 2D/2D Bi2WO6/C3N5 S-scheme heterojunction for highly selective production of CH4 by photocatalytic CO2 reduction under visible light
    Zhang, Huiming
    Bian, He
    Wang, Fang
    Li, Yaping
    Zhu, Lijun
    Xia, Daohong
    APPLIED CATALYSIS A-GENERAL, 2024, 686