A discrete time evolution model for fracture networks

被引:2
|
作者
Domokos, Gabor [1 ,2 ]
Regos, Krisztina [1 ,2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Morphol & Geometr Modeling, Muegyet Rkp 3,K220, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, MTA BME Morphodynam Res Grp, Muegyet Rkp 3,K220, H-1111 Budapest, Hungary
关键词
Fracture network; Evolution model; Discrete dynamical system; Tessellation; PATTERNS;
D O I
10.1007/s10100-022-00838-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We examine geological crack patterns using the mean field theory of convex mosaics. We assign the pair n over bar *,v over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\overline{n } }<^>{*},{\overline{v } }<^>{*}\right)$$\end{document} of average corner degrees (Domokos et al. in A two-vertex theorem for normal tilings. Aequat Math , 2022) to each crack pattern and we define two local, random evolutionary steps R-0 and R-1, corresponding to secondary fracture and rearrangement of cracks, respectively. Random sequences of these steps result in trajectories on the n over bar *,v over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\overline{n } }<^>{*},{\overline{v } }<^>{*}\right)$$\end{document} plane. We prove the existence of limit points for several types of trajectories. Also, we prove that celldensity rho over bar =v over bar *n over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\rho }= \frac{{\overline{v } }<^>{*}}{{\overline{n } }<^>{*}}$$\end{document} increases monotonically under any admissible trajectory.
引用
收藏
页码:83 / 94
页数:12
相关论文
共 50 条
  • [41] Capability for Hydrogeochemical Modelling within Discrete Fracture Networks
    Applegate, David
    Appleyard, Pete
    ENERGIES, 2022, 15 (17)
  • [42] Universal scaling solution for the connectivity of discrete fracture networks
    Yin, Tingchang
    Man, Teng
    Galindo-Torres, Sergio Andres
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 599
  • [43] Machine learning for flux regression in discrete fracture networks
    Berrone, S.
    Della Santa, F.
    Pieraccini, S.
    Vaccarino, F.
    GEM-INTERNATIONAL JOURNAL ON GEOMATHEMATICS, 2021, 12 (01)
  • [44] Machine learning for flux regression in discrete fracture networks
    S. Berrone
    F. Della Santa
    S. Pieraccini
    F. Vaccarino
    GEM - International Journal on Geomathematics, 2021, 12
  • [45] Mathematical Model of Discrete Logic Bomb with Time-delay in the Computer Networks
    Ge, Shao-Ting
    Liu, Zhimin
    Mao, Aiying
    Kang, Lijuan
    He, Chunhua
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 705 - 710
  • [46] On the use of separable volterra networks to model discrete-time volterra systems
    Adeney, KM
    Korenberg, MJ
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (01): : 174 - 175
  • [47] Discrete-Time Non-Markovian SEIS Model on Complex Networks
    Tomovski, Igor
    Basnarkov, Lasko
    Abazi, Alajdin
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (02): : 552 - 563
  • [48] The state estimation for discrete-time delayed standard neural networks model
    Zhu, Jin
    Li, Taifang
    Leng, Qiangkui
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 2348 - 2353
  • [49] Discrete time analysis of internal model control strategies based on neural networks
    Hussain, MA
    Allwright, JC
    Kershenbaum, LS
    1996 ICHEME RESEARCH EVENT - SECOND EUROPEAN CONFERENCE FOR YOUNG RESEARCHERS IN CHEMICAL ENGINEERING, VOLS 1 AND 2, 1996, : 754 - 756
  • [50] OPTIMAL CONTROL OF A DISCRETE TIME STOCHASTIC MODEL OF AN EPIDEMIC SPREADING IN ARBITRARY NETWORKS
    Angaroni, Fabrizio
    Damiani, Chiara
    Ramunni, Giulia
    Antoniotti, Marco
    PROCEEDINGS OF THE 2021 ANNUAL MODELING AND SIMULATION CONFERENCE (ANNSIM'21), 2020,