A discrete time evolution model for fracture networks

被引:2
|
作者
Domokos, Gabor [1 ,2 ]
Regos, Krisztina [1 ,2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Morphol & Geometr Modeling, Muegyet Rkp 3,K220, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, MTA BME Morphodynam Res Grp, Muegyet Rkp 3,K220, H-1111 Budapest, Hungary
关键词
Fracture network; Evolution model; Discrete dynamical system; Tessellation; PATTERNS;
D O I
10.1007/s10100-022-00838-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We examine geological crack patterns using the mean field theory of convex mosaics. We assign the pair n over bar *,v over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\overline{n } }<^>{*},{\overline{v } }<^>{*}\right)$$\end{document} of average corner degrees (Domokos et al. in A two-vertex theorem for normal tilings. Aequat Math , 2022) to each crack pattern and we define two local, random evolutionary steps R-0 and R-1, corresponding to secondary fracture and rearrangement of cracks, respectively. Random sequences of these steps result in trajectories on the n over bar *,v over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\overline{n } }<^>{*},{\overline{v } }<^>{*}\right)$$\end{document} plane. We prove the existence of limit points for several types of trajectories. Also, we prove that celldensity rho over bar =v over bar *n over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\rho }= \frac{{\overline{v } }<^>{*}}{{\overline{n } }<^>{*}}$$\end{document} increases monotonically under any admissible trajectory.
引用
收藏
页码:83 / 94
页数:12
相关论文
共 50 条
  • [31] A discrete fracture double porosity model
    Ezzedine, S
    ROCK MECHANICS TOOLS AND TECHNIQUES, VOLS 1 AND 2, 1996, : 1399 - 1406
  • [32] Simulation of solute transport in discrete fracture networks using the time domain random walk method
    Bodin, J
    Porel, G
    Delay, F
    EARTH AND PLANETARY SCIENCE LETTERS, 2003, 208 (3-4) : 297 - 304
  • [33] Impact of Complex Fracture Networks on Rate Transient Behavior of Wells in Unconventional Reservoirs Based on Embedded Discrete Fracture Model
    Qin, Jiazheng
    Xu, Yingjie
    Tang, Yong
    Liang, Rui
    Zhong, Qianhu
    Yu, Wei
    Sepehrnoori, Kamy
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2022, 144 (08):
  • [34] A general stochastic model for studying time evolution of transition networks
    Zhan, Choujun
    Tse, Chi K.
    Small, Michael
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 464 : 198 - 210
  • [35] Predictions of Rock Temperature Evolution at the Lahendong Geothermal Field by Coupled Numerical Model with Discrete Fracture Model Scheme
    Qarinur, Muhammad
    Ogata, Sho
    Kinoshita, Naoki
    Yasuhara, Hideaki
    ENERGIES, 2020, 13 (12)
  • [36] Computational model coupling mode II discrete fracture propagation with continuum damage zone evolution
    Jin, Wencheng
    Xu, Hao
    Arson, Chloe
    Busetti, Seth
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2017, 41 (02) : 223 - 250
  • [37] Discrete Element simulation of concrete fracture and crack evolution
    Beckmann, Birgit
    Schicktanz, Kai
    Curbach, Manfred
    BETON- UND STAHLBETONBAU, 2018, 113 : 91 - 95
  • [38] Adiabatic Theorem for Discrete Time Evolution
    Tanaka, Atushi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2011, 80 (12)
  • [39] Discrete Time Evolution of Proteomic Biomarkers
    Gnabasik, David
    Alaghband, Gita
    2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), VOL 2, 2014, : 11 - 16
  • [40] Application of discrete fracture networks in mining and civil geomechanics
    Lorig, L. J.
    Darcel, C.
    Damjanac, B.
    Pierce, M.
    Billaux, D.
    TRANSACTIONS OF THE INSTITUTIONS OF MINING AND METALLURGY SECTION A-MINING TECHNOLOGY, 2015, 124 (04): : 239 - 254