A discrete time evolution model for fracture networks

被引:2
|
作者
Domokos, Gabor [1 ,2 ]
Regos, Krisztina [1 ,2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Morphol & Geometr Modeling, Muegyet Rkp 3,K220, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, MTA BME Morphodynam Res Grp, Muegyet Rkp 3,K220, H-1111 Budapest, Hungary
关键词
Fracture network; Evolution model; Discrete dynamical system; Tessellation; PATTERNS;
D O I
10.1007/s10100-022-00838-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We examine geological crack patterns using the mean field theory of convex mosaics. We assign the pair n over bar *,v over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\overline{n } }<^>{*},{\overline{v } }<^>{*}\right)$$\end{document} of average corner degrees (Domokos et al. in A two-vertex theorem for normal tilings. Aequat Math , 2022) to each crack pattern and we define two local, random evolutionary steps R-0 and R-1, corresponding to secondary fracture and rearrangement of cracks, respectively. Random sequences of these steps result in trajectories on the n over bar *,v over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\overline{n } }<^>{*},{\overline{v } }<^>{*}\right)$$\end{document} plane. We prove the existence of limit points for several types of trajectories. Also, we prove that celldensity rho over bar =v over bar *n over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\rho }= \frac{{\overline{v } }<^>{*}}{{\overline{n } }<^>{*}}$$\end{document} increases monotonically under any admissible trajectory.
引用
收藏
页码:83 / 94
页数:12
相关论文
共 50 条
  • [1] A discrete time evolution model for fracture networks
    Gábor Domokos
    Krisztina Regős
    Central European Journal of Operations Research, 2024, 32 : 83 - 94
  • [2] A discrete-time model of phenotypic evolution
    Cirne, Diego
    Campos, Paulo R. A.
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 476
  • [3] Evolution of Dispersal in a Structured Metapopulation Model in Discrete Time
    Kalle Parvinen
    Bulletin of Mathematical Biology, 2006, 68 : 655 - 678
  • [5] Gene regulatory networks: A discrete model of dynamics and topological evolution
    Rohlf, T
    Bornholdt, S
    FUNCTION AND REGULATION OF CELLULAR SYSTEMS, 2004, : 233 - 239
  • [6] A continuum model for coupled stress and fluid flow in discrete fracture networks
    Gan Q.
    Elsworth D.
    Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2016, 2 (1) : 43 - 61
  • [7] Improvements to the Fracture Pipe Network Model for Complex 3D Discrete Fracture Networks
    Wang, Chenhui
    Wu, Kejian
    Scott, Gilbert
    WATER RESOURCES RESEARCH, 2022, 58 (03)
  • [8] A connectivity index for discrete fracture networks
    Xu, C.
    Dowd, P. A.
    Mardia, K. V.
    Fowell, R. J.
    MATHEMATICAL GEOLOGY, 2006, 38 (05): : 611 - 634
  • [9] GAS MIGRATION IN DISCRETE FRACTURE NETWORKS
    THUNVIK, R
    BRAESTER, C
    WATER RESOURCES RESEARCH, 1990, 26 (10) : 2425 - 2434
  • [10] A Connectivity Index for Discrete Fracture Networks
    C. Xu
    P. A. Dowd
    K. V. Mardia
    R. J. Fowell
    Mathematical Geology, 2006, 38 : 611 - 634