Synergetic effects of Cu cluster-doped g-C3N4 with multiple active sites for CO2 reduction to C2 products: A DFT study

被引:13
|
作者
Zhou, Fanghe [1 ]
Fang, Xu [1 ]
Zhang, Yonglin [1 ]
Yang, Wu [1 ]
Zhou, Wenquan [4 ]
Zhou, Hao [1 ]
Liu, Qizhen [3 ,5 ]
Wu, Jiang [1 ,2 ,6 ]
Qi, Fei [1 ]
Shen, Yixuan [1 ]
机构
[1] Shanghai Univ Elect Power, Coll Energy & Mech Engn, Shanghai 200090, Peoples R China
[2] Shanghai Non Carbon Energy Convers & Utilizat Inst, Shanghai 200240, Peoples R China
[3] Shanghai Environm Monitoring Ctr, Shanghai 200030, Peoples R China
[4] Jiangsu Tianjie Environm Device Co, Yancheng 224055, Peoples R China
[5] 55 Sanjiang Rd, Shanghai 200030, Peoples R China
[6] 2103 Pingliang Rd, Shanghai 200090, Peoples R China
基金
中国国家自然科学基金;
关键词
Cu clusters; CO2; reduction; DFT; C2; products; HER; WORK-FUNCTION; ELECTROREDUCTION; ACTIVATION; CATALYSIS; INSIGHTS; CU(100);
D O I
10.1016/j.fuel.2023.129202
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The photocatalytic reduction of CO2 is a promising strategy for converting this greenhouse gas into valuable products. However, developing highly efficient photocatalysts remains a challenging task. In this study, we investigated the properties of Cu4 and Cu5-doped g-C3N4 photocatalysts using density functional theory. Our findings revealed that Cu clusters can form an Ohmic contact with C3N4, promoting the separation and transfer of photo-generated electrons and holes, and reducing the reaction barrier. We optimized the adsorption models of gas-phase intermediate molecules and identified the most stable configuration with the lowest adsorption energy. The results indicated that Cu clusters and C3N4 can work synergistically to provide active sites for the adsorption of gas-phase molecules, revealing the mechanism for lowering the activation energy. Cu4-doped C3N4 was identified as the most promising photocatalyst through the comparison of the Gibbs free energy change in CO2 reduction and the HER energy barrier. Further research found that the co-adsorption of *CO on the Cu clusters effectively suppressed the hydrogen evolution reaction, providing insights into the potential mechanism un-derlying the high selectivity of Cu clusters for the production of C2 products through CO2 reduction.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Potassium-Doped g-C3N4 Achieving Efficient Visible-Light-Driven CO2 Reduction
    Wang, Shuhui
    Zhan, Jiawei
    Chen, Kui
    Ali, Asad
    Zeng, Linghui
    Zhao, He
    Hu, Wanglai
    Zhu, Lixin
    Xu, Xiaoliang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (22) : 8214 - 8222
  • [42] Facile one-pot synthesis of Mg-doped g-C3N4 for photocatalytic reduction of CO2
    Dong, Xinyue
    Zhang, Suicai
    Wu, Hualin
    Kang, Zhuo
    Wang, Li
    RSC ADVANCES, 2019, 9 (49) : 28894 - 28901
  • [43] Core-shell LaPO4/g-C3N4 nanowires for highly active and selective CO2 reduction
    Li, Mengli
    Zhang, Lingxia
    Fan, Xiangqian
    Wu, Meiying
    Wang, Min
    Cheng, Ruolin
    Zhang, Linlin
    Yao, Heliang
    Shi, Jianlin
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 201 : 629 - 635
  • [44] Insights into bimetallic single-atom-doped g-C3N4 photo-catalysts for CO2 conversion to HCOOH: A DFT study
    Zhong, Shan
    Shi, Hangyu
    Zhang, Lishan
    Li, Yifu
    Liu, Guoguan
    Zhang, Qian
    Ru, Xuan
    Liu, Baojiang
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [45] Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance
    Tang, Qijun
    Sun, Zhuxing
    Deng, Shuang
    Wang, Haiqiang
    Wu, Zhongbiao
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 564 : 406 - 417
  • [46] Efficient electroreduction of CO2 to C2-C3 products on Cu/Cu2O@N-doped graphene
    Zhi, Wen-Ya
    Liu, Yu-Ting
    Shan, Si-Li
    Jiang, Cheng-Jie
    Wang, Huan
    Lu, Jia-Xing
    JOURNAL OF CO2 UTILIZATION, 2021, 50
  • [47] Activated g-C3N4 Photocatalyst with Defect Engineering for Efficient Reduction of CO2 in Water
    Tong, Zhenwei
    Hai, Yuyan
    Wang, Baodeng
    Lv, Fei
    Zhong, Zhencheng
    Xiong, Rihua
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (23): : 11067 - 11075
  • [48] Enhanced performance of attapulgite-supported g-C3N4 for photocatalytic CO2 reduction
    Yang, Wenqin
    Zhou, Yu
    Zhao, Jiale
    She, Houde
    Zhang, Yang
    Peng, Jianhong
    Huang, Jingwei
    Wang, Lei
    Wang, Qizhao
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 692
  • [49] Incorporation of Cesium Lead Halide Perovskites into g-C3N4 for Photocatalytic CO2 Reduction
    Cheng, Ruolin
    Jin, Handong
    Roeffaers, Maarten B. J.
    Hofkens, Johan
    Debroye, Elke
    ACS OMEGA, 2020, 5 (38): : 24495 - 24503
  • [50] Recent progress in modifications of g-C3N4 for photocatalytic hydrogen evolution and CO2 reduction
    Rana, Garima
    Dhiman, Pooja
    Kumar, Amit
    Dawi, Elmuez A.
    Sharma, Gaurav
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2024, 39 (01)