In-hospital real-time prediction of COVID-19 severity regardless of disease phase using electronic health records

被引:0
|
作者
Park, Hyungjun [1 ]
Choi, Chang-Min [2 ,3 ]
Kim, Sung-Hoon [4 ]
Kim, Su Hwan [5 ,6 ]
Kim, Deog Kyoem [5 ,7 ]
Jeong, Ji Bong [5 ,6 ]
机构
[1] Gumdan Top Hosp, Dept Internal Med, Div pulmonol & Crit Care Med, Incheon, South Korea
[2] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Internal Med,Div Pulmonol & Crit Care Med, Seoul, South Korea
[3] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Internal Med,Div Oncol, Seoul, South Korea
[4] Ulsan, Coll Med, Asan Med Ctr, Dept Anesthesiol & Pain Med, Seoul, South Korea
[5] Seoul Natl Univ, Coll Med, Dept Internal Med, Seoul, South Korea
[6] Seoul Natl Univ, Boramae Med Ctr, Seoul Metropolitan Govt, Dept Internal Med,Div Gastroenterol, Seoul, South Korea
[7] Seoul Natl Univ, Seoul Metropolitan Govt, Boramae Med Ctr, Dept Internal Med,Div Pulm & Crit Care Med, Seoul, South Korea
来源
PLOS ONE | 2024年 / 19卷 / 01期
关键词
D O I
10.1371/journal.pone.0294362
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Coronavirus disease 2019 (COVID-19) has strained healthcare systems worldwide. Predicting COVID-19 severity could optimize resource allocation, like oxygen devices and intensive care. If machine learning model could forecast the severity of COVID-19 patients, hospital resource allocation would be more comfortable. This study evaluated machine learning models using electronic records from 3,996 COVID-19 patients to forecast mild, moderate, or severe disease up to 2 days in advance. A deep neural network (DNN) model achieved 91.8% accuracy, 0.96 AUROC, and 0.90 AUPRC for 2-day predictions, regardless of disease phase. Tree-based models like random forest achieved slightly better metrics (random forest: 94.1% of accuracy, 0.98 AUROC, 0.95 AUPRC; Gradient boost: 94.1% of accuracy, 0.98 AUROC, 0.94 AUPRC), prioritizing treatment factors like steroid use. However, the DNN relied more on fixed patient factors like demographics and symptoms in aspect to SHAP value importance. Since treatment patterns vary between hospitals, the DNN may be more generalizable than tree-based models (random forest, gradient boost model). The results demonstrate accurate short-term forecasting of COVID-19 severity using routine clinical data. DNN models may balance predictive performance and generalizability better than other methods. Severity predictions by machine learning model could facilitate resource planning, like ICU arrangement and oxygen devices.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Impact of cardiovascular disease on in-hospital mortality in patients with COVID-19
    Genova, V. Pencheva
    Pancheva, R.
    Stoimenov, B.
    Manov, E.
    Kolev, V.
    Tsrancheva, R.
    Koshtikova, K.
    Stoianov, D.
    Donev, S.
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2022, 60
  • [42] Prediction models for in-hospital deaths of patients with COVID-19 using electronic healthcare data (Vol 39, pg 1463, 2023)
    Hiraga, Kenichi
    Takeuchi, Masato
    Kimura, Takeshi
    Yoshida, Satomi
    Kawakami, Koji
    [J]. CURRENT MEDICAL RESEARCH AND OPINION, 2024, 40 (08) : 1453 - 1453
  • [43] Comparison of in-hospital mortality risk prediction models from COVID-19
    El-Solh, Ali A.
    Lawson, Yolanda
    Carter, Michael
    El-Solh, Daniel A.
    Mergenhagen, Kari A.
    [J]. PLOS ONE, 2020, 15 (12):
  • [44] Usefulness of urine biomarkers for the prediction of in-hospital mortality in the COVID-19 patients
    Morell-Garcia, D.
    Ramos-Chavarino, D.
    Bauca, J. M.
    Argente Del Castillo, P.
    Ballesteros-Vizoso, M. A.
    Garcia, B.
    Valina, L.
    Gomez-Cobo, C.
    De Guadiana Romualdo, L. Garcia
    Llompart, I.
    Garcia-Raja, A. M.
    [J]. CLINICA CHIMICA ACTA, 2022, 530 : S318 - S318
  • [45] Association of Padua prediction score with in-hospital prognosis in COVID-19 patients
    Zeng, D. X.
    Xu, J. L.
    Mao, Q. X.
    Liu, R.
    Zhang, W. Y.
    Qian, H. Y.
    Xu, L.
    [J]. QJM-AN INTERNATIONAL JOURNAL OF MEDICINE, 2020, 113 (11) : 789 - 793
  • [46] Impact of Development and Severity of AKI on In-Hospital Outcomes Among Patients With COVID-19
    Huang, Jin
    Du, Te
    Bajaj, Arrsh
    Gemmel, David J.
    Sarac, Erdal
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2022, 33 (11): : 892 - 892
  • [47] Predicting the outcome for COVID-19 patients by applying time series classification to electronic health records
    Davi Silva Rodrigues
    Ana Catharina S. Nastri
    Marcello M. Magri
    Maura Salaroli de Oliveira
    Ester C. Sabino
    Pedro H. M. F. Figueiredo
    Anna S. Levin
    Maristela P. Freire
    Leila S. Harima
    Fátima L. S. Nunes
    João Eduardo Ferreira
    [J]. BMC Medical Informatics and Decision Making, 22
  • [48] Predicting the outcome for COVID-19 patients by applying time series classification to electronic health records
    Rodrigues, Davi Silva
    Nastri, Ana Catharina S.
    Magri, Marcello M.
    de Oliveira, Maura Salaroli
    Sabino, Ester C.
    Figueiredo, Pedro H. M. F.
    Levin, Anna S.
    Freire, Maristela P.
    Harima, Leila S.
    Nunes, Fatima L. S.
    Ferreira, Joao Eduardo
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [49] Real-Time Neurodegenerative Disease Video Classification with Severity Prediction
    Dentamaro, Vincenzo
    Impedovo, Donato
    Pirlo, Giuseppe
    [J]. IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT II, 2019, 11752 : 618 - 628
  • [50] A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients
    Razavian, Narges
    Major, Vincent J.
    Sudarshan, Mukund
    Burk-Rafel, Jesse
    Stella, Peter
    Randhawa, Hardev
    Bilaloglu, Seda
    Chen, Ji
    Nguy, Vuthy
    Wang, Walter
    Zhang, Hao
    Reinstein, Ilan
    Kudlowitz, David
    Zenger, Cameron
    Cao, Meng
    Zhang, Ruina
    Dogra, Siddhant
    Harish, Keerthi B.
    Bosworth, Brian
    Francois, Fritz
    Horwitz, Leora I.
    Ranganath, Rajesh
    Austrian, Jonathan
    Aphinyanaphongs, Yindalon
    [J]. NPJ DIGITAL MEDICINE, 2020, 3 (01)