In-hospital real-time prediction of COVID-19 severity regardless of disease phase using electronic health records

被引:0
|
作者
Park, Hyungjun [1 ]
Choi, Chang-Min [2 ,3 ]
Kim, Sung-Hoon [4 ]
Kim, Su Hwan [5 ,6 ]
Kim, Deog Kyoem [5 ,7 ]
Jeong, Ji Bong [5 ,6 ]
机构
[1] Gumdan Top Hosp, Dept Internal Med, Div pulmonol & Crit Care Med, Incheon, South Korea
[2] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Internal Med,Div Pulmonol & Crit Care Med, Seoul, South Korea
[3] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Internal Med,Div Oncol, Seoul, South Korea
[4] Ulsan, Coll Med, Asan Med Ctr, Dept Anesthesiol & Pain Med, Seoul, South Korea
[5] Seoul Natl Univ, Coll Med, Dept Internal Med, Seoul, South Korea
[6] Seoul Natl Univ, Boramae Med Ctr, Seoul Metropolitan Govt, Dept Internal Med,Div Gastroenterol, Seoul, South Korea
[7] Seoul Natl Univ, Seoul Metropolitan Govt, Boramae Med Ctr, Dept Internal Med,Div Pulm & Crit Care Med, Seoul, South Korea
来源
PLOS ONE | 2024年 / 19卷 / 01期
关键词
D O I
10.1371/journal.pone.0294362
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Coronavirus disease 2019 (COVID-19) has strained healthcare systems worldwide. Predicting COVID-19 severity could optimize resource allocation, like oxygen devices and intensive care. If machine learning model could forecast the severity of COVID-19 patients, hospital resource allocation would be more comfortable. This study evaluated machine learning models using electronic records from 3,996 COVID-19 patients to forecast mild, moderate, or severe disease up to 2 days in advance. A deep neural network (DNN) model achieved 91.8% accuracy, 0.96 AUROC, and 0.90 AUPRC for 2-day predictions, regardless of disease phase. Tree-based models like random forest achieved slightly better metrics (random forest: 94.1% of accuracy, 0.98 AUROC, 0.95 AUPRC; Gradient boost: 94.1% of accuracy, 0.98 AUROC, 0.94 AUPRC), prioritizing treatment factors like steroid use. However, the DNN relied more on fixed patient factors like demographics and symptoms in aspect to SHAP value importance. Since treatment patterns vary between hospitals, the DNN may be more generalizable than tree-based models (random forest, gradient boost model). The results demonstrate accurate short-term forecasting of COVID-19 severity using routine clinical data. DNN models may balance predictive performance and generalizability better than other methods. Severity predictions by machine learning model could facilitate resource planning, like ICU arrangement and oxygen devices.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Real-World Evidence of COVID-19 Patients' Data Quality in the Electronic Health Records
    Binkheder, Samar
    Asiri, Mohammed Ahmed
    Altowayan, Khaled Waleed
    Alshehri, Turki Mohammed
    Alzarie, Mashhour Faleh
    Aldekhyyel, Raniah N.
    Almaghlouth, Ibrahim A.
    Almulhem, Jwaher A.
    [J]. HEALTHCARE, 2021, 9 (12)
  • [32] In-Hospital Mortality Prediction for Heart Failure Patients Using Electronic Health Records and an Improved Bagging Algorithm
    Wang, Binhua
    Ma, Xiao
    Wang, Yifei
    Dong, Wei
    Liu, Chengyu
    Bai, Yongyi
    Bian, Suyan
    Ying, Jun
    Hu, Xin
    Wan, Shanshan
    Xue, Wanguo
    Tian, Yaping
    Zhong, Cheng
    Zhang, Yang
    He, Kunlun
    Li, Jiayue
    [J]. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2020, 10 (05) : 998 - 1004
  • [33] Real-time tracking and prediction of COVID-19 infection using digital proxies of population mobility and mixing
    Kathy Leung
    Joseph T. Wu
    Gabriel M. Leung
    [J]. Nature Communications, 12
  • [34] Real-time tracking and prediction of COVID-19 infection using digital proxies of population mobility and mixing
    Leung, Kathy
    Wu, Joseph T.
    Leung, Gabriel M.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [35] IN-HOSPITAL REAL TIME CONTINUOUS GLUCOSE MONITORING DURING COVID-19 OUTBREAK: EXPERIENCE FROM A COVID HUB
    Rossi, A.
    Montefusco, L.
    Pastore, I. F.
    Lunati, M. E.
    Magni, C.
    Niero, F.
    Galli, M.
    Fiorina, P.
    [J]. DIABETES TECHNOLOGY & THERAPEUTICS, 2021, 23 : A120 - A120
  • [36] Optimizing COVID-19 surveillance using historical electronic health records of influenza infections
    Du, Zhanwei
    Bai, Yuan
    Wang, Lin
    Herrera-Diestra, Jose L.
    Yuan, Zhilu
    Guo, Renzhong
    Cowling, Benjamin J.
    Meyers, Lauren A.
    Holme, Petter
    [J]. PNAS NEXUS, 2022, 1 (02):
  • [37] Real-time spatial health surveillance: Mapping the UK COVID-19 epidemic
    Fry, Richard
    Hollinghurst, Joe
    Stagg, Helen R.
    Thompson, Daniel A.
    Fronterre, Claudio
    Orton, Chris
    Lyons, Ronan A.
    Ford, David, V
    Sheikh, Aziz
    Diggle, Peter J.
    [J]. INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2021, 149
  • [38] SCUBE1 is associated with thrombotic complications, disease severity, and in-hospital mortality in COVID-19 patients
    Toprak, Kenan
    Kaplangoray, Mustafa
    Palice, Ali
    Tascanov, Mustafa Begenc
    Inanir, Mehmet
    Memioglu, Tolga
    Kok, Zafer
    Bicer, Asuman
    Demirbag, Recep
    [J]. THROMBOSIS RESEARCH, 2022, 220 : 100 - 106
  • [39] ECHOCARDIOGRAPHIC AND BIOMARKER PREDICTORS FOR IN-HOSPITAL MORTALITY IN COVID-19 DISEASE
    Gomez, Joanne Michelle D.
    Zimmerman, Allison
    de lavallaz, Jeanne Du Fay
    Nguyen, Tai Tri
    Bouroukas, Athina
    Canzolino, Jessica
    Goldberg, Alan
    Suboc, Tisha
    Rao, Anupama
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (18) : 3106 - 3106
  • [40] Impact of COVID-19 In-hospital Mortality in Chagas Disease Patients
    da Silva, Gilberto Marcelo Sperandio
    Mediano, Mauro Felippe Felix
    Murgel, Michele Ferreira
    Andrade, Patricia Mello
    de Holanda, Marcelo Teixeira
    Valete Rosalino, Claudia Maria
    de Sousa, Andrea Silvestre
    Mendes, Fernanda de Souza Nogueira Sardinha
    Pinheiro, Roberta Olmo
    Veloso, Valdilea Goncalves
    Saraiva, Roberto Magalhaes
    Hasslocher-Moreno, Alejandro Marcel
    [J]. FRONTIERS IN MEDICINE, 2022, 9