Mitigating Bias in Machine Learning: Improving MinoritySpecific Graft Failure Survival Prediction with Synthetic Minority Oversampling

被引:0
|
作者
Malyala, R. [1 ]
Nguan, C. [2 ]
机构
[1] Univ British Columbia, Fac Med, Vancouver, BC, Canada
[2] Univ British Columbia, Dept Urol Sci, Vancouver, BC, Canada
关键词
D O I
暂无
中图分类号
R61 [外科手术学];
学科分类号
摘要
A146
引用
收藏
页码:S677 / S677
页数:1
相关论文
共 50 条
  • [41] A comparative study on prediction of survival event of heart failure patients using machine learning algorithms
    Mücella Özbay Karakuş
    Orhan Er
    Neural Computing and Applications, 2022, 34 : 13895 - 13908
  • [42] Machine learning-based failure prediction in industrial maintenance: improving performance by sliding window selection
    Leukel, Joerg
    Gonzalez, Julian
    Riekert, Martin
    INTERNATIONAL JOURNAL OF QUALITY & RELIABILITY MANAGEMENT, 2023, 40 (06) : 1449 - 1462
  • [43] A Machine Learning Model With Survival Statistics to Identify Predictors of Descemet Stripping Automated Endothelial Keratoplasty Graft Failure
    Hallak, Joelle A.
    JAMA OPHTHALMOLOGY, 2021, 139 (02) : 198 - 199
  • [44] Improving risk prediction in heart failure using machine learning (vol 22, pg 139, 2020)
    Adler, E. D.
    Voors, A. A.
    Klein, L.
    Macheret, F.
    Braun, O. O.
    Urey, M. A.
    Zhu, W.
    Sama, I
    Tadel, M.
    Campagnari, C.
    Greenberg, B.
    Yagil, A.
    EUROPEAN JOURNAL OF HEART FAILURE, 2020, 22 (12) : 2399 - 2399
  • [45] A Machine-Learning Based Model for Identification of Prognostic Factors and Prediction of Graft Survival in Kidney Transplant Patients
    Kim, J.
    Jun, T.
    Jung, J.
    Ko, Y.
    Kwon, H.
    Kim, Y.
    Hwang, S.
    Shin, S.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2023, 23 (06) : S743 - S743
  • [46] Development of an Explainable Heart Failure Patients Survival Status Prediction Model Using Machine Learning Algorithms
    Demis, Betimihirt Getnet Tsehay
    Yibre, Abdulkerim M.
    PAN-AFRICAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PT I, PANAFRICON AI 2023, 2024, 2068 : 117 - 137
  • [47] Improving Urban Water Security through Pipe-Break Prediction Models: Machine Learning or Survival Analysis
    Snider, Brett
    McBean, Edward
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2020, 146 (03)
  • [48] Improving the Post-Operative Prediction of BCR-Free Survival Time with mRNA Variables and Machine Learning
    O'Donnell, Autumn
    Wolsztynski, Eric
    Cronin, Michael
    Moghaddam, Shirin
    CANCERS, 2023, 15 (04)
  • [49] Predicting Kidney Graft Survival Using Machine Learning Methods: Prediction Model Development and Feature Significance Analysis Study
    Naqvi, Syed Asil Ali
    Tennankore, Karthik
    Vinson, Amanda
    Roy, Patrice C.
    Abidi, Syed Sibte Raza
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (08)
  • [50] PREDICTION OF GRAFT SURVIVAL USING ARTIFICIAL NEURAL NETWORK (ANN), AND BAYESIAN BELIEF NETWORK (BBN): A COMPARATIVE STUDY -Graft Survival Predicticn Using Machine Learning: A Comparative Study
    Dhyankumar, C. Theophilus
    Arun, C. Joe
    Rajmohan, M.
    ASIA PACIFIC JOURNAL OF HEALTH MANAGEMENT, 2021, 16 (03): : 29 - 35