North America's water distribution systems are aging and incurring increased pipe breaks. These breaks pose a serious threat to urban drinking water security, leading to service interruptions, loss of revenue, and increasing risk of water contamination. Prediction models have been developed to help identify when individual underground water pipes are expected to break, helping utilities develop pipe renewal projects and avoid costly pipe breaks that impact water supply reliability. This paper provides an in-depth comparison of the two leading statistical pipe-break modeling methods: machine-learning and survival-analysis algorithms. A gradient-boosting decision tree machine-learning model and a Weibull proportional hazard survival-analysis model are used to predict time to next break for cast-iron pipes in a major Canadian water distribution system. Results indicate that removal of censored events from the machine-learning model biases the model to predict earlier pipe breaks than occur. Overall, water utilities concerned with short-term security arising from impacts of pipe breaks on water security may favor the machine-learning approach, but the survival-analysis models' ability to incorporate right-censored data makes it more appropriate for long-term asset management planning.
机构:
Tecnol Monterrey, Lab Sostenibil & Cambio Climat, Escuela Ingn & Ciencias, Av Gen Ramon Corona 2514, Zapopan 45138, Jalisco, MexicoTecnol Monterrey, Lab Sostenibil & Cambio Climat, Escuela Ingn & Ciencias, Av Gen Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
del Castillo, Alberto Fernandez
Garibay, Marycarmen Verduzco
论文数: 0引用数: 0
h-index: 0
机构:
Tecnol Monterrey, Lab Sostenibil & Cambio Climat, Escuela Ingn & Ciencias, Av Gen Ramon Corona 2514, Zapopan 45138, Jalisco, MexicoTecnol Monterrey, Lab Sostenibil & Cambio Climat, Escuela Ingn & Ciencias, Av Gen Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
Garibay, Marycarmen Verduzco
Diaz-Vazquez, Diego
论文数: 0引用数: 0
h-index: 0
机构:
Tecnol Monterrey, Lab Sostenibil & Cambio Climat, Escuela Ingn & Ciencias, Av Gen Ramon Corona 2514, Zapopan 45138, Jalisco, MexicoTecnol Monterrey, Lab Sostenibil & Cambio Climat, Escuela Ingn & Ciencias, Av Gen Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
Diaz-Vazquez, Diego
Yebra-Montes, Carlos
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, ENES Leon, Predio Saucillo & Po trero, Blvd UNAM 2011, Leon 37684, Guanajuato, MexicoTecnol Monterrey, Lab Sostenibil & Cambio Climat, Escuela Ingn & Ciencias, Av Gen Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
Yebra-Montes, Carlos
Brown, Lee E.
论文数: 0引用数: 0
h-index: 0
机构:Tecnol Monterrey, Lab Sostenibil & Cambio Climat, Escuela Ingn & Ciencias, Av Gen Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
Brown, Lee E.
Johnson, Andrew
论文数: 0引用数: 0
h-index: 0
机构:
Univ Leeds, Sch Geog & Waterleeds, Leeds LS2 9JT, EnglandTecnol Monterrey, Lab Sostenibil & Cambio Climat, Escuela Ingn & Ciencias, Av Gen Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
Johnson, Andrew
Garcia-Gonzalez, Alejandro
论文数: 0引用数: 0
h-index: 0
机构:
Escuela Med & Ciencias Salud, Tecnol Monterrey, Nuevo Mex, CP, Ave Gen Ramon Corona 2514, Zapopan 45138, Jalisco, MexicoTecnol Monterrey, Lab Sostenibil & Cambio Climat, Escuela Ingn & Ciencias, Av Gen Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
Garcia-Gonzalez, Alejandro
Gradilla-Hernandez, Misael Sebastian
论文数: 0引用数: 0
h-index: 0
机构:
Tecnol Monterrey, Lab Sostenibil & Cambio Climat, Escuela Ingn & Ciencias, Av Gen Ramon Corona 2514, Zapopan 45138, Jalisco, MexicoTecnol Monterrey, Lab Sostenibil & Cambio Climat, Escuela Ingn & Ciencias, Av Gen Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico