We prove that in a cocompact complex hyperbolic arithmetic lattice Gamma < PU(m, 1) of the simplest type, deep enough finite index subgroups admit plenty of homomorphisms to Z with kernel of type Fm-1 but not of type F-m. This provides many finitely presented non-hyperbolic subgroups of hyperbolic groups and answers an old question of Brady. Our method also yields a proof of a special case of Singer's conjecture for aspherical Kahler manifolds.
机构:
Mathematics Department, University of Oklahoma, Norman
Mathematics Department, Connecticut College, New LondonMathematics Department, University of Oklahoma, Norman
Basmajian A.
Miner R.
论文数: 0引用数: 0
h-index: 0
机构:
Geometry Center, University of Minnesota, Mineapolis, MNMathematics Department, University of Oklahoma, Norman
机构:
Sorbonne Univ, CNRS UMR 7586, Fac Sci, Inst Math Jussieu Paris Rive Gauche, 4 Pl Jussieu, F-75252 Paris 05, France
Sorbonne Univ, Fac Sci, INRIA EPI OURAGAN, 4 Pl Jussieu, F-75252 Paris 05, FranceSorbonne Univ, CNRS UMR 7586, Fac Sci, Inst Math Jussieu Paris Rive Gauche, 4 Pl Jussieu, F-75252 Paris 05, France
Falbel, Elisha
Pasquinelli, Irene
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bristol, Sch Math, Fry Bldg,Woodland Rd, Bristol BS8 1UG, EnglandSorbonne Univ, CNRS UMR 7586, Fac Sci, Inst Math Jussieu Paris Rive Gauche, 4 Pl Jussieu, F-75252 Paris 05, France