Subgroups of hyperbolic groups, finiteness properties and complex hyperbolic lattices

被引:2
|
作者
Isenrich, Claudio Llosa [1 ]
Py, Pierre [2 ,3 ,4 ,5 ]
机构
[1] Karlsruhe Inst Technol, Fac Math, D-76131 Karlsruhe, Germany
[2] Univ Strasbourg, IRMA, F-67084 Strasbourg, France
[3] CNRS, F-67084 Strasbourg, France
[4] Univ Grenoble Alpes, Inst Fourier, F-38000 Grenoble, France
[5] CNRS, F-38000 Grenoble, France
关键词
NUMBERS; FORMS;
D O I
10.1007/s00222-023-01223-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that in a cocompact complex hyperbolic arithmetic lattice Gamma < PU(m, 1) of the simplest type, deep enough finite index subgroups admit plenty of homomorphisms to Z with kernel of type Fm-1 but not of type F-m. This provides many finitely presented non-hyperbolic subgroups of hyperbolic groups and answers an old question of Brady. Our method also yields a proof of a special case of Singer's conjecture for aspherical Kahler manifolds.
引用
收藏
页码:233 / 254
页数:22
相关论文
共 50 条