Denoising UWB Radar Data for Human Activity Recognition Using Convolutional Autoencoders

被引:3
|
作者
Lafontaine, Virgile [1 ]
Bouchard, Kevin [1 ]
Maitre, Julien [1 ]
Gaboury, Sebastien [1 ]
机构
[1] Univ Quebec Chicoutimi, Lab Intelligence Ambiante Reconnaissance Act LIARA, Saguenay, PQ G7H 2B1, Canada
来源
IEEE ACCESS | 2023年 / 11卷
基金
加拿大自然科学与工程研究理事会;
关键词
Activity of daily living; data filtering; data processing; deep learning; human activity recognition; unsupervised learning; UWB radars; SENSORS; MODEL;
D O I
10.1109/ACCESS.2023.3300224
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human Activity Recognition (HAR) is one of the most popular research topics thanks to its usefulness in providing targeted, meaningful assistance to older adults. Because of the aging of the population in first-world countries, it becomes increasingly important to find innovative solutions that reduce risks associated with aging-in-place policies. HAR proposes solutions that are based on Ambient Intelligence (AmI) to alleviate those risks. In this work, we exploited three UWB radars to recognize 14 activities performed by 19 participants in a prototype smart-home apartment. The main contribution of this paper is UWB radar data cleaning on a practical dataset. The UWB radar data has been filtered using an unsupervised deep convolutional autoencoder (CNN-AE) that learns background noise from the data. This filtering method is compared to the unfiltered data using a Convolutional Neural Network (CNN) classifier in a Leave-One-Subject-Out (LOSO) classification. Performances attest that the CNN-AE unsupervised filtering is efficient for HAR. In addition, we tested the generalization potential of this architecture when the dataset is comprised of a lower number of participants (1, 5, 10, and all 19 participants). Generalization in HAR is difficult as the results show the importance of data quantity and number of subjects. We obtained 69.9% top-1 accuracy when using our filtering architecture compared to 48.4% without it. To conclude, we show that an unsupervised CNN-AE can efficiently filter and generalize UWB radar data in a HAR setting while providing easier learning constraints and implementation on a practical dataset.
引用
收藏
页码:81298 / 81309
页数:12
相关论文
共 50 条
  • [41] Recognition of online Handwritten Bangla Characters using Hierarchical System with Denoising Autoencoders
    Pal, Arghya
    Pawar, J. D.
    2015 INTERNATIONAL CONFERENCE ON COMPUTATION OF POWER, ENERGY, INFORMATION AND COMMUNICATION (ICCPEIC), 2015, : 47 - 51
  • [42] Clutter Mitigation in Range Enhanced Radar Images Using Sparsity Based Denoising Autoencoders
    Vishwakarma, Shelly
    Pandey, Neeraj
    Ram, Shobha Sundar
    2019 INTERNATIONAL RADAR CONFERENCE (RADAR2019), 2019, : 330 - 335
  • [43] Data-Driven Radar Processing Using a Parametric Convolutional Neural Network for Human Activity Classification
    Stadelmayer, Thomas
    Santra, Avik
    Weigel, Robert
    Lurz, Fabian
    IEEE SENSORS JOURNAL, 2021, 21 (17) : 19529 - 19540
  • [44] Mitigation of Through-Wall Distortions of Frontal Radar Images Using Denoising Autoencoders
    Vishwakarma, Shelly
    Ram, Shobha Sundar
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (09): : 6650 - 6663
  • [45] Deep Learning-Based Human Recognition Through the Wall using UWB radar
    Assawaroongsakul, Pongpol
    Khumdee, Mawin
    Phasukkit, Pattarapong
    Houngkamhang, Nongluck
    16TH INTERNATIONAL JOINT SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND NATURAL LANGUAGE PROCESSING (ISAI-NLP 2021), 2021,
  • [46] IR-UWB Radar Sensor for Human Gesture Recognition by Using Machine Learning
    Park, Junbum
    Cho, Sung Ho
    PROCEEDINGS OF 2016 IEEE 18TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS; IEEE 14TH INTERNATIONAL CONFERENCE ON SMART CITY; IEEE 2ND INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), 2016, : 1246 - 1249
  • [47] Attention-Augmented Convolutional Autoencoder for Radar-Based Human Activity Recognition
    Campbell, Christopher
    Ahmad, Fauzia
    2020 IEEE INTERNATIONAL RADAR CONFERENCE (RADAR), 2020, : 990 - 995
  • [48] Gender Identification Using Marginalised Stacked Denoising Autoencoders on Twitter Data
    Al-onazi, Badriyya B.
    Nour, Mohamed K.
    Alshamrani, Hassan
    Al Duhayyim, Mesfer
    Mohsen, Heba
    Abdelmageed, Amgad Atta
    Mohammed, Gouse Pasha
    Zamani, Abu Sarwar
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (03): : 2529 - 2544
  • [49] Human Activity Recognition Using Convolutional Autoencoder and Advanced Preprocessing
    Zaoui, Chaimae
    Benabbou, Faouzia
    Ettaoufik, Abdelaziz
    Sabiri, Khadija
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (04) : 144 - 159
  • [50] Physiological Waveform Imputation of Missing Data using Convolutional Autoencoders
    Miller, Daniel
    Ward, Andrew
    Bambos, Nicholas
    Scheinker, David
    Shin, Andrew
    2018 IEEE 20TH INTERNATIONAL CONFERENCE ON E-HEALTH NETWORKING, APPLICATIONS AND SERVICES (HEALTHCOM), 2018,