Anomalous dynamics in symmetric triangular irrational billiards

被引:3
|
作者
Zahradova, Katerina [1 ]
Slipantschuk, Julia [2 ]
Bandtlow, Oscar F. [1 ]
Just, Wolfram [1 ,3 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London, England
[2] Univ Warwick, Dept Math, Coventry, England
[3] Univ Rostock, Inst Math, Rostock, Germany
基金
英国工程与自然科学研究理事会;
关键词
Polygonal billiard; Recurrence; Induced map; INTERVAL EXCHANGE TRANSFORMATIONS; POLYGONS; TRAJECTORIES; ERGODICITY; SEQUENCES; ORBITS; FLOWS; SHAPE;
D O I
10.1016/j.physd.2022.133619
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We identify a symmetry induced mechanism which dominates the long time behaviour in symmetric triangular billiards. We rigorously prove the existence of invariant sets in symmetric irrational billiards on which the dynamics is governed by an interval exchange transformation. Counterintuitively, this property of symmetric irrational billiards is analogous to the case of general rational billiards, and it highlights the non-trivial impact of symmetries in non-hyperbolic dynamical systems. Our findings provide an explanation for the logarithmic subdiffusive relaxation processes observed in certain triangular billiards. In addition we are able to settle a long standing conjecture about the existence of non-periodic and not everywhere dense trajectories in triangular billiards. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [31] EXTENSIVE NUMERICAL STUDY OF SPECTRAL STATISTICS FOR RATIONAL AND IRRATIONAL POLYGONAL BILLIARDS
    SHUDO, A
    SHIMIZU, Y
    PHYSICAL REVIEW E, 1993, 47 (01): : 54 - 62
  • [32] FAT, SYMMETRIC, IRRATIONAL CANTOR SETS
    BOES, D
    DARST, R
    ERDOS, P
    AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (05): : 340 - 341
  • [33] Three unequal masses on a ring and soft triangular billiards
    Oliveira, H. A.
    Emidio, G. A.
    Beims, M. W.
    CHAOS, 2012, 22 (02)
  • [34] Quantum chaotic trajectories in integrable right triangular billiards
    de Sales, JA
    Florencio, J
    PHYSICAL REVIEW E, 2003, 67 (01):
  • [35] Anomalous diffusion and dynamical localization in polygonal billiards
    Prosen, T
    Znidaric, M
    PHYSICAL REVIEW LETTERS, 2001, 87 (11) : art. no. - 114101
  • [36] Anomalous diffusion and dynamical localization in polygonal billiards
    Prosen, T.
    Žnidarič, M.
    2001, American Institute of Physics Inc. (87)
  • [37] Stability of classical electron orbits in triangular electron billiards
    Linke, H
    Christensson, L
    Omling, P
    Lindelof, PE
    PHYSICAL REVIEW B, 1997, 56 (03) : 1440 - 1446
  • [38] Ray splitting in a class of chaotic triangular step billiards
    Kohler, A
    Killesreiter, GHM
    Blumel, R
    PHYSICAL REVIEW E, 1997, 56 (03): : 2691 - 2701
  • [39] Intermediate spectral statistics of rational triangular quantum billiards
    Lozej, Crt
    Bogomolny, Eugene
    PHYSICAL REVIEW E, 2024, 110 (02)
  • [40] The behaviour of resonances in Hecke triangular billiards under deformation
    Howard, P. J.
    O'Mahony, P. F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (31) : 9275 - 9295