Anomalous dynamics in symmetric triangular irrational billiards

被引:3
|
作者
Zahradova, Katerina [1 ]
Slipantschuk, Julia [2 ]
Bandtlow, Oscar F. [1 ]
Just, Wolfram [1 ,3 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London, England
[2] Univ Warwick, Dept Math, Coventry, England
[3] Univ Rostock, Inst Math, Rostock, Germany
基金
英国工程与自然科学研究理事会;
关键词
Polygonal billiard; Recurrence; Induced map; INTERVAL EXCHANGE TRANSFORMATIONS; POLYGONS; TRAJECTORIES; ERGODICITY; SEQUENCES; ORBITS; FLOWS; SHAPE;
D O I
10.1016/j.physd.2022.133619
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We identify a symmetry induced mechanism which dominates the long time behaviour in symmetric triangular billiards. We rigorously prove the existence of invariant sets in symmetric irrational billiards on which the dynamics is governed by an interval exchange transformation. Counterintuitively, this property of symmetric irrational billiards is analogous to the case of general rational billiards, and it highlights the non-trivial impact of symmetries in non-hyperbolic dynamical systems. Our findings provide an explanation for the logarithmic subdiffusive relaxation processes observed in certain triangular billiards. In addition we are able to settle a long standing conjecture about the existence of non-periodic and not everywhere dense trajectories in triangular billiards. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [21] On the incenters of triangular orbits on elliptic billiards
    Romaskevich, Olga
    ENSEIGNEMENT MATHEMATIQUE, 2014, 60 (3-4): : 247 - 255
  • [22] New mechanism of chaos in triangular billiards
    S. V. Naydenov
    D. M. Naplekov
    V. V. Yanovsky
    JETP Letters, 2013, 98 : 496 - 502
  • [23] Magnetic focusing in triangular electron billiards
    Boggild, P
    Kristensen, A
    Lindelof, PE
    PHYSICAL REVIEW B, 1999, 59 (20) : 13067 - 13072
  • [24] Anomalous entanglement in chaotic Dirac billiards
    Ramos, J. G. G. S.
    da Silva, I. M. L.
    Barbosa, A. L. R.
    PHYSICAL REVIEW B, 2014, 90 (24)
  • [25] Anomalous diffusion in infinite horizon billiards
    Armstead, DN
    Hunt, BR
    Ott, E
    PHYSICAL REVIEW E, 2003, 67 (02):
  • [26] A NEW COMPUTATION SCHEME FOR TRIANGULAR QUANTUM BILLIARDS
    BELLOMO, P
    PRAMANA-JOURNAL OF PHYSICS, 1995, 44 (02): : 85 - 108
  • [27] Impact of symmetry on ergodic properties of triangular billiards
    Zahradova, Katerina
    Slipantschuk, Julia
    Bandtlow, Oscar F.
    Just, Wolfram
    PHYSICAL REVIEW E, 2022, 105 (01)
  • [28] New Properties of Triangular Orbits in Elliptic Billiards
    Garcia, Ronaldo
    Reznik, Dan
    Koiller, Jair
    AMERICAN MATHEMATICAL MONTHLY, 2021, : 898 - 910
  • [29] On projective billiards with open subsets of triangular orbits
    Fierobe, Corentin
    ISRAEL JOURNAL OF MATHEMATICS, 2024,
  • [30] Numerical study on ergodic properties of triangular billiards
    Artuso, R
    Casati, G
    Guarneri, I
    PHYSICAL REVIEW E, 1997, 55 (06) : 6384 - 6390