Anomalous dynamics in symmetric triangular irrational billiards

被引:3
|
作者
Zahradova, Katerina [1 ]
Slipantschuk, Julia [2 ]
Bandtlow, Oscar F. [1 ]
Just, Wolfram [1 ,3 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London, England
[2] Univ Warwick, Dept Math, Coventry, England
[3] Univ Rostock, Inst Math, Rostock, Germany
基金
英国工程与自然科学研究理事会;
关键词
Polygonal billiard; Recurrence; Induced map; INTERVAL EXCHANGE TRANSFORMATIONS; POLYGONS; TRAJECTORIES; ERGODICITY; SEQUENCES; ORBITS; FLOWS; SHAPE;
D O I
10.1016/j.physd.2022.133619
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We identify a symmetry induced mechanism which dominates the long time behaviour in symmetric triangular billiards. We rigorously prove the existence of invariant sets in symmetric irrational billiards on which the dynamics is governed by an interval exchange transformation. Counterintuitively, this property of symmetric irrational billiards is analogous to the case of general rational billiards, and it highlights the non-trivial impact of symmetries in non-hyperbolic dynamical systems. Our findings provide an explanation for the logarithmic subdiffusive relaxation processes observed in certain triangular billiards. In addition we are able to settle a long standing conjecture about the existence of non-periodic and not everywhere dense trajectories in triangular billiards. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Quantum properties of irrational triangular billiards
    de Aguiar, F. M.
    PHYSICAL REVIEW E, 2008, 77 (03):
  • [2] Ergodicity and quantum correlations in irrational triangular billiards
    Araujo Lima, T.
    Rodriguez-Perez, S.
    de Aguiar, F. M.
    PHYSICAL REVIEW E, 2013, 87 (06):
  • [3] Hierarchical dynamics in triangular billiards
    Hasegawa, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (08) : 2948 - 2949
  • [4] On triangular billiards
    Puchta, JC
    COMMENTARII MATHEMATICI HELVETICI, 2001, 76 (03) : 501 - 505
  • [5] Classical and quantum dynamics of electrons in open equilateral triangular billiards
    Christensson, L
    Linke, H
    Omling, P
    Lindelof, PE
    Zozoulenko, IV
    Berggren, KF
    PHYSICAL REVIEW B, 1998, 57 (19) : 12306 - 12313
  • [6] Global Dynamics and Bifurcations of an Oscillator with Symmetric Irrational Nonlinearities
    Liu, Rong
    Shang, Huilin
    FRACTAL AND FRACTIONAL, 2023, 7 (12)
  • [7] Infinite genus surfaces and irrational polygonal billiards
    Ferrán Valdez
    Geometriae Dedicata, 2009, 143 : 143 - 154
  • [8] Quantum chaos in triangular billiards
    Lozej, Crt
    Casati, Giulio
    Prosen, Tomaz
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [9] Infinite genus surfaces and irrational polygonal billiards
    Valdez, Ferran
    GEOMETRIAE DEDICATA, 2009, 143 (01) : 143 - 154
  • [10] QUANTUM ASPECTS OF TRIANGULAR BILLIARDS
    MILTENBURG, AG
    RUIJGROK, TW
    PHYSICA A, 1994, 210 (3-4): : 476 - 488