Cine-cardiac magnetic resonance to distinguish between ischemic and non-ischemic cardiomyopathies: a machine learning approach

被引:4
|
作者
Cau, Riccardo [1 ]
Pisu, Francesco [1 ]
Pintus, Alessandra [1 ]
Palmisano, Vitanio [2 ]
Montisci, Roberta [3 ]
Suri, Jasjit S. [4 ]
Salgado, Rodrigo [5 ]
Saba, Luca [1 ]
机构
[1] Azienda Osped Univ AOU Cagliari Polo Monserrato, Dept Radiol, SS Monserrato 554, Cagliari, Italy
[2] Osped Gen Reg F Miulli, Acquaviva Delle Fonti, Italy
[3] Azienda Osped Univ AOU Cagliari Polo Monserrato, Dept Cardiol, SS Monserrato 554, I-09045 Cagliari, Italy
[4] AtheroPoint, Stroke Monitoring & Diagnost Div, Roseville, CA USA
[5] Univ Ziekenhuis Antwerpen, Edegem, Belgium
关键词
Cine magnetic resonance imaging; Artificial intelligence; Machine learning; Cardiomyopathy; Cardiovascular diseases; TEXTURE ANALYSIS; MYOCARDIAL-INFARCTION; HEART-FAILURE; ASSOCIATION; STRAIN;
D O I
10.1007/s00330-024-10640-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectiveThis work aimed to derive a machine learning (ML) model for the differentiation between ischemic cardiomyopathy (ICM) and non-ischemic cardiomyopathy (NICM) on non-contrast cardiovascular magnetic resonance (CMR).MethodsThis retrospective study evaluated CMR scans of 107 consecutive patients (49 ICM, 58 NICM), including atrial and ventricular strain parameters. We used these data to compare an explainable tree-based gradient boosting additive model with four traditional ML models for the differentiation of ICM and NICM. The models were trained and internally validated with repeated cross-validation according to discrimination and calibration. Furthermore, we examined important variables for distinguishing between ICM and NICM.ResultsA total of 107 patients and 38 variables were available for the analysis. Of those, 49 were ICM (34 males, mean age 60 +/- 9 years) and 58 patients were NICM (38 males, mean age 56 +/- 19 years). After 10 repetitions of the tenfold cross-validation, the proposed model achieved the highest area under curve (0.82, 95% CI [0.47-1.00]) and lowest Brier score (0.19, 95% CI [0.13-0.27]), showing competitive diagnostic accuracy and calibration. At the Youden's index, sensitivity was 0.72 (95% CI [0.68-0.76]), the highest of all. Analysis of predictions revealed that both atrial and ventricular strain CMR parameters were important for the identification of ICM patients.ConclusionThe current study demonstrated that using a ML model, multi chamber myocardial strain, and function on non-contrast CMR parameters enables the discrimination between ICM and NICM with competitive diagnostic accuracy.Clinical relevance statementA machine learning model based on non-contrast cardiovascular magnetic resonance parameters may discriminate between ischemic and non-ischemic cardiomyopathy enabling wider access to cardiovascular magnetic resonance examinations with lower costs and faster imaging acquisition.Key Points center dot The exponential growth in cardiovascular magnetic resonance examinations may require faster and more cost-effective protocols.center dot Artificial intelligence models can be utilized to distinguish between ischemic and non-ischemic etiologies.center dot Machine learning using non-contrast CMR parameters can effectively distinguish between ischemic and non-ischemic cardiomyopathies.Key Points center dot The exponential growth in cardiovascular magnetic resonance examinations may require faster and more cost-effective protocols.center dot Artificial intelligence models can be utilized to distinguish between ischemic and non-ischemic etiologies.center dot Machine learning using non-contrast CMR parameters can effectively distinguish between ischemic and non-ischemic cardiomyopathies.Key Points center dot The exponential growth in cardiovascular magnetic resonance examinations may require faster and more cost-effective protocols.center dot Artificial intelligence models can be utilized to distinguish between ischemic and non-ischemic etiologies.center dot Machine learning using non-contrast CMR parameters can effectively distinguish between ischemic and non-ischemic cardiomyopathies.
引用
收藏
页码:5691 / 5704
页数:14
相关论文
共 50 条
  • [41] Challenges in clinical translation of cardiac magnetic resonance imaging radiomics in non-ischemic cardiomyopathy: a narrative review
    Deng, Jia
    Zhou, Langtao
    Liao, Bihong
    Cai, Qinxi
    Luo, Guanghua
    Zhou, Hong
    Tang, Huifang
    CARDIOVASCULAR DIAGNOSIS AND THERAPY, 2024, 14 (06) : 1210 - 1227
  • [42] Late Gadolinium Enhancement on Cardiac Magnetic Resonance as Predictor of Overall Mortality in Patients With Non-Ischemic Cardiomyopathy
    Foroutan, Farid
    Gaztanaga, Juan
    White, James
    Merlo, Marco
    Alonso-Rodriguez, David
    Vallejo-Garcia, Victor
    Vidal-Perez, Rafael
    Corros-Vicente, Cecilia
    Katz, Stuart
    Flewitt, Jacqueline
    Sinagra, Gianfranco
    Farkouh, Michael
    Alba, Ana Carolina
    CIRCULATION, 2018, 138
  • [43] Arrhythmic Risk Stratification In Non-ischemic Dilated Cardiomyopathies: Additional Value Of Left Ventricular Myocardial Scar Visualized By Contrast-enhanced Cardiac Magnetic Resonance
    Marra, Martina Perazzolo
    De lazzari, Manuel
    Corbetti, Francesco
    Tona, Francesco
    Migliore, Federico
    Zorzi, Alessandro
    Thiene, Gaetano
    Basso, Cristina
    Corrado, Domenico
    Iliceto, Sabino
    CIRCULATION, 2011, 124 (21)
  • [44] Relationship between cardiac magnetic resonance derived extracellular volume fraction and myocardial strain in patients with non-ischemic dilated cardiomyopathy
    Azuma, M.
    Kato, S.
    Kodama, S.
    Hayakawa, K.
    Kagimoto, M.
    Iguchi, K.
    Fukuoka, M.
    Fukui, K.
    Iwasawa, T.
    Utsunomiya, D.
    Kimura, K.
    Tamura, K.
    EUROPEAN HEART JOURNAL, 2020, 41 : 239 - 239
  • [45] Late gadolinium enhancement patterns in non ischemic dilated cardiomyopathies: role of cardiac magnetic resonance for risk stratification
    Marra, M. Perazzolo
    Cacciavillani, L.
    Corbetti, F.
    Boffa, G.
    Tarantini, G.
    Basso, C.
    De Lazzari, M.
    Spadotto, V.
    Zilio, F.
    Iliceto, S.
    EUROPEAN HEART JOURNAL, 2010, 31 : 633 - 633
  • [46] Delayed enhancement of cardiac magnetic resonance imaging is a useful predictor of cardiac resynchronization therapy in patients with non-ischemic cardiomyopathy
    Matsumoto, K.
    Kajiya, T.
    Hayashi, T.
    Taniguchi, Y.
    Ikeda, Y.
    Yamada, S.
    Mizutani, K.
    Iwata, S.
    Okajima, K.
    Yoshida, M.
    EUROPEAN HEART JOURNAL, 2007, 28 : 291 - 292
  • [47] Three-dimensional speckle tracking echocardiography in ischemic and non-ischemic cardiomyopathy: correlation with myocardial scar imaging using cardiac magnetic resonance
    Aly, M. F. A.
    Kleijn, S. A. K.
    Menken-Negroiu, R. F. M.
    Robbers, L. F. R.
    Beek, A. M. B.
    Kamp, O. K.
    EUROPEAN HEART JOURNAL, 2015, 36 : 434 - 435
  • [48] Cardiac magnetic resonance and galectin-3 level as predictors of prognostic outcomes for non-ischemic cardiomyopathy patients
    Da-Jun Hu
    Jing Xu
    Wei Du
    Jian-Xin Zhang
    Min Zhong
    Ya-Nan Zhou
    The International Journal of Cardiovascular Imaging, 2016, 32 : 1725 - 1733
  • [49] Cardiac magnetic resonance and galectin-3 level as predictors of prognostic outcomes for non-ischemic cardiomyopathy patients
    Hu, Da-Jun
    Xu, Jing
    Du, Wei
    Zhang, Jian-Xin
    Zhong, Min
    Zhou, Ya-Nan
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2016, 32 (12): : 1725 - 1733
  • [50] Role of gadolinium enhanced cardiac magnetic resonance in recent onset non-ischemic cardiomyopathy: a systematic review and metanalysis
    Diego A Eifer
    Felipe S Torres
    Murilo Foppa
    Journal of Cardiovascular Magnetic Resonance, 17 (Suppl 1)