Cine-cardiac magnetic resonance to distinguish between ischemic and non-ischemic cardiomyopathies: a machine learning approach

被引:4
|
作者
Cau, Riccardo [1 ]
Pisu, Francesco [1 ]
Pintus, Alessandra [1 ]
Palmisano, Vitanio [2 ]
Montisci, Roberta [3 ]
Suri, Jasjit S. [4 ]
Salgado, Rodrigo [5 ]
Saba, Luca [1 ]
机构
[1] Azienda Osped Univ AOU Cagliari Polo Monserrato, Dept Radiol, SS Monserrato 554, Cagliari, Italy
[2] Osped Gen Reg F Miulli, Acquaviva Delle Fonti, Italy
[3] Azienda Osped Univ AOU Cagliari Polo Monserrato, Dept Cardiol, SS Monserrato 554, I-09045 Cagliari, Italy
[4] AtheroPoint, Stroke Monitoring & Diagnost Div, Roseville, CA USA
[5] Univ Ziekenhuis Antwerpen, Edegem, Belgium
关键词
Cine magnetic resonance imaging; Artificial intelligence; Machine learning; Cardiomyopathy; Cardiovascular diseases; TEXTURE ANALYSIS; MYOCARDIAL-INFARCTION; HEART-FAILURE; ASSOCIATION; STRAIN;
D O I
10.1007/s00330-024-10640-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectiveThis work aimed to derive a machine learning (ML) model for the differentiation between ischemic cardiomyopathy (ICM) and non-ischemic cardiomyopathy (NICM) on non-contrast cardiovascular magnetic resonance (CMR).MethodsThis retrospective study evaluated CMR scans of 107 consecutive patients (49 ICM, 58 NICM), including atrial and ventricular strain parameters. We used these data to compare an explainable tree-based gradient boosting additive model with four traditional ML models for the differentiation of ICM and NICM. The models were trained and internally validated with repeated cross-validation according to discrimination and calibration. Furthermore, we examined important variables for distinguishing between ICM and NICM.ResultsA total of 107 patients and 38 variables were available for the analysis. Of those, 49 were ICM (34 males, mean age 60 +/- 9 years) and 58 patients were NICM (38 males, mean age 56 +/- 19 years). After 10 repetitions of the tenfold cross-validation, the proposed model achieved the highest area under curve (0.82, 95% CI [0.47-1.00]) and lowest Brier score (0.19, 95% CI [0.13-0.27]), showing competitive diagnostic accuracy and calibration. At the Youden's index, sensitivity was 0.72 (95% CI [0.68-0.76]), the highest of all. Analysis of predictions revealed that both atrial and ventricular strain CMR parameters were important for the identification of ICM patients.ConclusionThe current study demonstrated that using a ML model, multi chamber myocardial strain, and function on non-contrast CMR parameters enables the discrimination between ICM and NICM with competitive diagnostic accuracy.Clinical relevance statementA machine learning model based on non-contrast cardiovascular magnetic resonance parameters may discriminate between ischemic and non-ischemic cardiomyopathy enabling wider access to cardiovascular magnetic resonance examinations with lower costs and faster imaging acquisition.Key Points center dot The exponential growth in cardiovascular magnetic resonance examinations may require faster and more cost-effective protocols.center dot Artificial intelligence models can be utilized to distinguish between ischemic and non-ischemic etiologies.center dot Machine learning using non-contrast CMR parameters can effectively distinguish between ischemic and non-ischemic cardiomyopathies.Key Points center dot The exponential growth in cardiovascular magnetic resonance examinations may require faster and more cost-effective protocols.center dot Artificial intelligence models can be utilized to distinguish between ischemic and non-ischemic etiologies.center dot Machine learning using non-contrast CMR parameters can effectively distinguish between ischemic and non-ischemic cardiomyopathies.Key Points center dot The exponential growth in cardiovascular magnetic resonance examinations may require faster and more cost-effective protocols.center dot Artificial intelligence models can be utilized to distinguish between ischemic and non-ischemic etiologies.center dot Machine learning using non-contrast CMR parameters can effectively distinguish between ischemic and non-ischemic cardiomyopathies.
引用
收藏
页码:5691 / 5704
页数:14
相关论文
共 50 条
  • [21] DIFFERENTIAL INTERACTIONS BETWEEN FUNCTIONAL MITRAL REGURGITATION AND MYOCARDIAL SCAR OR REMODELING IN ISCHEMIC VERSUS NON-ISCHEMIC CARDIOMYOPATHY: A CARDIAC MAGNETIC RESONANCE STUDY
    Wang, Tom Kai Ming
    Kocyigit, Duygu
    Chan, Nicholas
    Anthony, Chris
    Bullen, Jennifer
    Popovic, Zoran
    Tang, Wai Hong Wilson
    Griffin, Brian P.
    Flamm, Scott D.
    Kwon, Deborah
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 1214 - 1214
  • [22] The role of genetics in apparently acquired non-ischemic cardiomyopathies leading to sudden cardiac death
    Holmstrom, L.
    Pylkas, K.
    Mantere, T.
    Porvari, K.
    Pakanen, L.
    Kortelainen, M. L.
    Kerkela, R.
    Huikuri, H.
    Junttila, M. J.
    EUROPEAN HEART JOURNAL, 2018, 39 : 813 - 813
  • [23] Comparison of benefits from cardiac resynchronization therapy between ischemic and non-ischemic patients
    Nagele, H.
    Orazi, S.
    Bis, K. Goscinska
    Anselme, F.
    Scheffer, M.
    Martino, M.
    Ritter, P.
    EUROPEAN HEART JOURNAL, 2012, 33 : 536 - 536
  • [24] PREDICTORS OF CARDIAC MAGNETIC RESONANCE-ASSESSED REVERSE REMODELING IN NON-ISCHEMIC DILATED CARDIOMYOPATHY
    Vergaro, Giuseppe
    Nesti, Lorenzo
    Barison, Andrea
    Prontera, Concetta
    Masotti, Silvia
    Aquaro, Giovanni Donato
    Clerico, Aldo
    Poletti, Roberta
    Passino, Claudio
    Emdin, Michele
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2016, 67 (13) : 1555 - 1555
  • [25] Prognostic value of left atrial size and function by cardiac magnetic resonance in non-ischemic cardiomyopathy
    Benjamin, Mina M.
    Munir, Muhammad S.
    Syed, Mushabbar A.
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2024, 40 (10): : 2041 - 2046
  • [26] Cardiac Magnetic Resonance Scar Imaging for Sudden Cardiac Death Risk Stratification in Patients with Non-Ischemic Cardiomyopathy
    Kim, Eun Kyoung
    Chattranukulchai, Pairoj
    Klem, Igor
    KOREAN JOURNAL OF RADIOLOGY, 2015, 16 (04) : 683 - 695
  • [27] Prediction of response to cardiac resynchronization therapy using cardiac magnetic resonance imaging in non-ischemic dilated cardiomyopathy
    Kim, S. E.
    Chun, K. H.
    Oh, J.
    Yu, H. T.
    Lee, C. J.
    Kim, T. H.
    Pak, H. N.
    Lee, M. H.
    Joung, B.
    Kang, S. M.
    EUROPEAN HEART JOURNAL, 2022, 43 : 1005 - 1005
  • [28] Arrhythmogenic cardiomyopathy and left ventricular non-compaction: role of cardiac magnetic resonance in non-ischemic cardiomyopathy
    Pour-Ghaz, I.
    Alkhatib, D.
    Rhea, I.
    Jefferies, J.
    DeCarr, K.
    Bihl, A.
    Bond, A. J.
    Sears, C.
    Klinsky, S.
    Hiatt, N.
    Khouzam, R. N.
    Yedlapati, N.
    AMERICAN JOURNAL OF THE MEDICAL SCIENCES, 2023, 365 : S31 - S31
  • [29] NON-INVASIVE RISK STRATIFICATION IN PATIENTS WITH NON-ISCHEMIC CARDIOMYOPATHY USING CARDIAC MAGNETIC RESONANCE IMAGING
    Ghosn, Mohamad
    Green, Patrick
    Chaikriangkrai, Kongkiat
    Birnbaum, Itamar
    Nagueh, Sherif
    Quinones, Miguel
    Zoghbi, William
    Shah, Dipan
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2014, 63 (12) : A1196 - A1196
  • [30] Cardiac contractility modulation efficacy: is there a difference between ischemic vs. non-ischemic patients?
    Fastner, C.
    Akin, I
    Yuecel, G.
    Rudic, B.
    El-Battrawy, I
    Kruska, M.
    Lang, S.
    Liebe, V
    Tueluemen, E.
    Borggrefe, M.
    Kuschyk, J.
    EUROPEAN HEART JOURNAL, 2020, 41 : 1117 - 1117