SSNbayes: An R Package for Bayesian Spatio-Temporal Modelling on Stream Networks

被引:0
|
作者
Santos-Fernandez, Edgar [1 ]
Hoef, Jay M. Ver [2 ,3 ]
Mcgree, James [4 ]
Isaak, Daniel J. [5 ]
Mengersen, Kerrie [1 ]
Peterson, Erin E. [1 ]
机构
[1] Queensland Univ Technol, Australian Res Council Ctr Excellence Math & Stat, Sch Math Sci, Block Y,Floor 8,Gardens Point Campus GPO Box 2434, Brisbane, QLD 4001, Australia
[2] NOAA NMFS Alaska Fisheries Sci Ctr, Marine Mammal Lab, Seattle, WA USA
[3] NOAA NMFS Alaska Fisheries Sci Ctr, Marine Mammal Lab, Fairbanks, AK USA
[4] Queensland Univ Technol, Sch Math Sci, Brisbane, Australia
[5] US Forest Serv, Rocky Mt Res Stn, Hamden, CT USA
来源
R JOURNAL | 2023年 / 15卷 / 03期
基金
澳大利亚研究理事会;
关键词
SPATIAL STATISTICAL-MODELS; MOVING-AVERAGE APPROACH; RIVER DISTANCES; PREDICTION; SPACE;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Spatio-temporal models are widely used in many research areas from ecology to epidemiology. However, a limited number of computational tools are available for modeling river network datasets in space and time. In this paper, we introduce the R package SSNbayes for fitting Bayesian spatio-temporal models and making predictions on branching stream networks. SSNbayes provides a linear regression framework with multiple options for incorporating spatial and temporal autocorrelation. Spatial dependence is captured using stream distance and flow connectivity while temporal autocorrelation is modelled using vector autoregression approaches. SSNbayes provides the functionality to make predictions across the whole network, compute exceedance probabilities, and other probabilistic estimates, such as the proportion of suitable habitat. We illustrate the functionality of the package using a stream temperature dataset collected in the Clearwater River Basin, USA.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Bayesian spatio-temporal models for stream networks
    Santos-Fernandez, Edgar
    Ver Hoef, Jay M. E.
    Peterson, Erin
    McGree, James J.
    Isaak, Daniel
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 170
  • [2] Bayesian Modelling and Analysis of Spatio-Temporal Neuronal Networks
    Rigat, Fabio
    de Gunst, Mathisca
    van Pelt, Jaap
    [J]. BAYESIAN ANALYSIS, 2006, 1 (04): : 733 - 764
  • [3] CircSpaceTime: an R package for spatial and spatio-temporal modelling of circular data
    Lasinio, Giovanna Jona
    Santoro, Mario
    Mastrantonio, Gianluca
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (07) : 1315 - 1345
  • [4] On Spatio-Temporal Modelling of Stream Network Initiation
    Papageorgaki I.
    Nalbantis I.
    [J]. Environmental Processes, 2018, 5 (Suppl 1) : 239 - 257
  • [5] Bayesian modeling of spatio-temporal data with R
    Shanmugam, Ramalingam
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (07) : 1224 - 1224
  • [6] Probabilistic fusion of spatio-temporal data to estimate stream flow via Bayesian networks
    Nagarajan, K.
    Krekeler, C.
    Slatton, K. C.
    [J]. IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 4870 - 4873
  • [7] Bayesian Physics Informed Neural Networks for data assimilation and spatio-temporal modelling of wildfires
    Dabrowski, Joel Janek
    Pagendam, Daniel Edward
    Hilton, James
    Sanderson, Conrad
    MacKinlay, Daniel
    Huston, Carolyn
    Bolt, Andrew
    Kuhnert, Petra
    [J]. SPATIAL STATISTICS, 2023, 55
  • [8] Spatio-temporal drought forecasting within Bayesian networks
    Madadgar, Shahrbanou
    Moradkhani, Hamid
    [J]. JOURNAL OF HYDROLOGY, 2014, 512 : 134 - 146
  • [9] Pivotal discrepancy measures for Bayesian modelling of spatio-temporal data
    Lindsay R. Morris
    Nokuthaba Sibanda
    [J]. Environmental and Ecological Statistics, 2022, 29 : 33 - 53
  • [10] Pivotal discrepancy measures for Bayesian modelling of spatio-temporal data
    Morris, Lindsay R.
    Sibanda, Nokuthaba
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2022, 29 (01) : 33 - 53