SSNbayes: An R Package for Bayesian Spatio-Temporal Modelling on Stream Networks

被引:0
|
作者
Santos-Fernandez, Edgar [1 ]
Hoef, Jay M. Ver [2 ,3 ]
Mcgree, James [4 ]
Isaak, Daniel J. [5 ]
Mengersen, Kerrie [1 ]
Peterson, Erin E. [1 ]
机构
[1] Queensland Univ Technol, Australian Res Council Ctr Excellence Math & Stat, Sch Math Sci, Block Y,Floor 8,Gardens Point Campus GPO Box 2434, Brisbane, QLD 4001, Australia
[2] NOAA NMFS Alaska Fisheries Sci Ctr, Marine Mammal Lab, Seattle, WA USA
[3] NOAA NMFS Alaska Fisheries Sci Ctr, Marine Mammal Lab, Fairbanks, AK USA
[4] Queensland Univ Technol, Sch Math Sci, Brisbane, Australia
[5] US Forest Serv, Rocky Mt Res Stn, Hamden, CT USA
来源
R JOURNAL | 2023年 / 15卷 / 03期
基金
澳大利亚研究理事会;
关键词
SPATIAL STATISTICAL-MODELS; MOVING-AVERAGE APPROACH; RIVER DISTANCES; PREDICTION; SPACE;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Spatio-temporal models are widely used in many research areas from ecology to epidemiology. However, a limited number of computational tools are available for modeling river network datasets in space and time. In this paper, we introduce the R package SSNbayes for fitting Bayesian spatio-temporal models and making predictions on branching stream networks. SSNbayes provides a linear regression framework with multiple options for incorporating spatial and temporal autocorrelation. Spatial dependence is captured using stream distance and flow connectivity while temporal autocorrelation is modelled using vector autoregression approaches. SSNbayes provides the functionality to make predictions across the whole network, compute exceedance probabilities, and other probabilistic estimates, such as the proportion of suitable habitat. We illustrate the functionality of the package using a stream temperature dataset collected in the Clearwater River Basin, USA.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] Bayesian spatio-temporal modelling of tobacco-related cancer mortality in Switzerland
    Juergens, Verena
    Ess, Silvia
    Phuleria, Harish C.
    Frueh, Martin
    Schwenkglenks, Matthias
    Frick, Harald
    Cerny, Thomas
    Vounatsou, Penelope
    [J]. GEOSPATIAL HEALTH, 2013, 7 (02) : 219 - 236
  • [22] Modelling local patterns of child mortality risk: a Bayesian Spatio-temporal analysis
    Alejandro Lome-Hurtado
    Jacques Lartigue-Mendoza
    Juan C. Trujillo
    [J]. BMC Public Health, 21
  • [23] HIGH RESOLUTION BAYESIAN SPATIO-TEMPORAL PRECIPITATION MODELLING IN PAKISTAN FOR THE APPRAISAL OF TRENDS
    Ahmad, Maqsood
    Chand, Sohail
    Yaseen, Muhammad
    [J]. PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2020, 57 (06): : 1669 - 1680
  • [24] A CASE STUDY FOR MODELLING CANCER INCIDENCE USING BAYESIAN SPATIO-TEMPORAL MODELS
    Kang, Su Yun
    McGree, James
    Baade, Peter
    Mengersen, Kerrie
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2015, 57 (03) : 325 - 345
  • [25] ON THE BAYESIAN ZERO-INFLATED SPATIO-TEMPORAL MODELLING OF DENGUE HEMORRHAGIC FEVER
    Sanson, Daniel R.
    Lim-Polestico, Daisy Lou
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2023, 90 (01) : 35 - 58
  • [26] Bayesian spatial and spatio-temporal approaches to modelling dengue fever: a systematic review
    Aswi, A.
    Cramb, S. M.
    Moraga, P.
    Mengersen, K.
    [J]. EPIDEMIOLOGY AND INFECTION, 2019, 147
  • [27] Bayesian latent variable modelling of multivariate spatio-temporal variation in cancer mortality
    Tzala, Evangelia
    Best, Nicky
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2008, 17 (01) : 97 - 118
  • [28] Climate variability and dengue fever in Makassar, Indonesia: Bayesian spatio-temporal modelling
    Aswi, Aswi
    Cramb, Susanna
    Duncan, Earl
    Hu, Wenbiao
    White, Gentry
    Mengersen, Kerrie
    [J]. SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2020, 33
  • [29] Modelling drivers of trawl fisheries discards using Bayesian spatio-temporal models
    Soto, M.
    Fernandez-Peralta, L.
    Rey, J.
    Czerwisnki, I.
    Garcia-Cancela, R.
    Llope, M.
    Cabrera-Busto, J.
    Liebana, M.
    Pennino, M. G.
    [J]. FISHERIES RESEARCH, 2023, 268
  • [30] A tutorial on spatio-temporal disease risk modelling in R using Markov chain Monte Carlo simulation and the CARBayesST package
    Lee, Duncan
    [J]. SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2020, 34