Isothermal Heteroepitaxy of Ge1-XSnX Structures for Electronic and Photonic Applications

被引:8
|
作者
Concepcion, Omar [1 ]
Sogaard, Nicolaj B. [2 ]
Bae, Jin-Hee [1 ]
Yamamoto, Yuji [3 ]
Tiedemann, Andreas T. [1 ]
Ikonic, Zoran [4 ]
Capellini, Giovanni [3 ,5 ]
Zhao, Qing-Tai [1 ]
Gruetzmacher, Detlev [1 ]
Buca, Dan [1 ]
机构
[1] Forschungszentrum Julich, PGI 9, D-52428 Julich, Germany
[2] Aarhus Univ, Interdisciplinary Nanosci Ctr iNANO, DK-8000 Aarhus, Denmark
[3] IHP Leibniz Inst Innovat Mikroelekt, D-15236 Frankfurt, Oder, Germany
[4] Univ Leeds, Pollard Inst Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
[5] Univ Roma Tre, Dipartimento Sci, I-00146 Rome, Italy
关键词
GeSn alloy; chemical vapor deposition; isothermal heterostructures; epitaxial growth; optoelectronic applications; EPITAXIAL-GROWTH; HETEROSTRUCTURES; DEPOSITION; ALLOYS; SNCL4; GE; SI;
D O I
10.1021/acsaelm.3c00112
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Epitaxy of semiconductor-based quantum well structures is a challenging task since it requires precise control of the deposition at the submonolayer scale. In the case of Ge1-xSnx alloys, the growth is particularly demanding since the lattice strain and the process temperature greatly impact the composition of the epitaxial layers. In this paper, the realization of high-quality pseudomorphic Ge1-xSnx layers with Sn content ranging from 6 at. % up to 15 at. % using isothermal processes in an industry-compatible reduced-pressure chemical vapor deposition reactor is presented. The epitaxy of Ge1-xSnx layers has been optimized for a standard process offering a high Sn concentration at a large process window. By varying the N2 carrier gas flow, isothermal heterostructure designs suitable for quantum transport and spintronic devices are obtained.
引用
收藏
页码:2268 / 2275
页数:8
相关论文
共 50 条
  • [31] Assessment of Ge1-xSnx Alloys for Strained Ge CMOS Devices
    Takeuchi, S.
    Shimura, Y.
    Nishimura, T.
    Vincent, B.
    Eneman, G.
    Clarysse, T.
    Demeulemeester, J.
    Temst, K.
    Vantomme, A.
    Dekoster, J.
    Caymax, M.
    Loo, R.
    Nakatsuka, O.
    Sakai, A.
    Zaima, S.
    SIGE, GE, AND RELATED COMPOUNDS 4: MATERIALS, PROCESSING, AND DEVICES, 2010, 33 (06): : 529 - 535
  • [32] The Theoretical Optical Gain of Ge1-xSnx Nanowires
    Xiong, Wen
    Fan, Wei-Jun
    Song, Zhi-Gang
    Tan, Chuan-Seng
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2020, 14 (04):
  • [33] Characterization of Local Strain Structures in Heteroepitaxial Ge1-xSnx/Ge Microstructures by using Microdiffraction Method
    Ike, S.
    Moriyama, Y.
    Kurosawa, M.
    Taoka, N.
    Nakatsuka, O.
    Imai, Y.
    Kimura, S.
    Tezuka, T.
    Zaima, S.
    ULSI PROCESS INTEGRATION 8, 2013, 58 (09): : 185 - 192
  • [34] Statistical model for the formation of the Ge1-xSnx alloy
    Ventura, C. I.
    Fuhr, J. D.
    Barrio, R. A.
    PHYSICA B-CONDENSED MATTER, 2009, 404 (18) : 2830 - 2833
  • [35] Formation of high-quality Ge1-xSnx layer on Ge(110) substrate with strain-induced confinement of stacking faults at Ge1-xSnx/Ge interfaces
    Asano, Takanori
    Taoka, Noriyuki
    Nakatsuka, Osamu
    Zaima, Shigeaki
    APPLIED PHYSICS EXPRESS, 2014, 7 (06)
  • [36] A New Application of Ge1-xSnx: Thermoelectric Materials
    Kurosawa, Masashi
    Imai, Yukihiro
    Iwahashi, Taisei
    Takahashi, Kouta
    Sakashita, Mitsuo
    Nakatsuka, Osamu
    Zaima, Shigeaki
    SIGE, GE, AND RELATED COMPOUNDS: MATERIALS, PROCESSING, AND DEVICES 8, 2018, 86 (07): : 321 - 328
  • [37] Ge1-xSnx Alloys Pseudomorphically Grown on Ge (001) by Sputtering
    Ladron de Guevara, H. Perez
    RodriGuez, A. G.
    Navarro-Contreras, H.
    Vidal, M. A.
    SIGE, GE, AND RELATED COMPOUNDS 5: MATERIALS, PROCESSING, AND DEVICES, 2012, 50 (09): : 413 - 417
  • [38] Reduced Pressure CVD Growth of Ge and Ge1-xSnx Alloys
    Wirths, S.
    Buca, D.
    Mussler, G.
    Tiedemann, A. T.
    Hollaender, B.
    Bernardy, P.
    Stoica, T.
    Gruetzmacher, D.
    Mantl, S.
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2013, 2 (05) : N99 - N102
  • [39] Strained Ge and Ge1-xSnx Technology for Future CMOS Devices
    Nakatsuka, Osamu
    Takeuchi, Shotaro
    Shimura, Yosuke
    Sakai, Akira
    Zaima, Shigeaki
    TECHNOLOGY EVOLUTION FOR SILICON NANO-ELECTRONICS, 2011, 470 : 146 - +
  • [40] Impact of Temperature and Doping on the Performance of Ge/Ge1-xSnx/Ge Heterojunction Phototransistors
    Kumar, Harshvardhan
    Basu, Rikmantra
    Chang, Guo-En
    IEEE PHOTONICS JOURNAL, 2020, 12 (03):