Feature Selection Using Diversity-Based Multi-objective Binary Differential Evolution

被引:30
|
作者
Wang, Peng [1 ]
Xue, Bing [1 ]
Liang, Jing [2 ,3 ]
Zhang, Mengjie [1 ]
机构
[1] Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington 6012, New Zealand
[2] Henan Inst Technol, Sch Elect Engn & Automat, Xinxiang 453000, Peoples R China
[3] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-objective optimization; differential evolution; feature selection; population diversity; GENETIC ALGORITHM; OPTIMIZATION; RELEVANCE;
D O I
10.1016/j.ins.2022.12.117
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
By identifying relevant features from the original data, feature selection methods can maintain or improve the classification accuracy and reduce the dimensionality. Recently, many multi -objective evolutionary methods have been proposed for feature selection. However, effectively handling the trade-offs between convergence and diversity of the non-dominated solutions re-mains a major challenge, especially for high-dimensional datasets. To cover this issue, this work studies a diversity-based multi-objective differential evolution approach to feature selection. During the environmental selection process, each of the solutions in the candidate pool will have a diversity score, and solutions with large diversity score values will be preferred so as to improve the population diversity. To reduce the search space, irrelevant and weakly relevant features are detected and removed in the proposed method. A new binary mutation operator using the neighborhood information of individuals is also proposed, aiming to produce better feature subsets. Experimental results on 14 datasets with varying difficulties show that the proposed feature selection method can obtain significantly better feature selection performance than cur-rent popular multi-objective feature selection methods.
引用
下载
收藏
页码:586 / 606
页数:21
相关论文
共 50 条
  • [21] A Multi-objective Feature Selection Approach Based on Binary PSO and Rough Set Theory
    Cervante, Liam
    Xue, Bing
    Shang, Lin
    Zhang, Mengjie
    EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION (EVOCOP 2013), 2013, 7832 : 25 - +
  • [22] Binary Multi-Objective Grey Wolf Optimizer for Feature Selection in Classification
    Al-Tashi, Qasem
    Abdulkadir, Said Jadid
    Rais, Helmi Md
    Mirjalili, Seyedali
    Alhussian, Hitham
    Ragab, Mohammed G.
    Alqushaibi, Alawi
    IEEE Access, 2020, 8 : 106247 - 106263
  • [23] A multi-objective differential evolution feature selection approach with a combined filter criterion<bold> </bold>
    Hancer, Emrah
    2018 2ND INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT), 2018, : 307 - 314
  • [24] Binary Multi-Objective Grey Wolf Optimizer for Feature Selection in Classification
    Al-Tashi, Qasem
    Abdulkadir, Said Jadid
    Rais, Helmi Md
    Mirjalili, Seyedali
    Alhussian, Hitham
    Ragab, Mohammed G.
    Alqushaibi, Alawi
    IEEE ACCESS, 2020, 8 : 106247 - 106263
  • [25] Multi-objective Differential Evolution Algorithm based on Adaptive Mutation and Partition Selection
    Zhao, Sen
    Hao, Zhifeng
    Huang, Han
    Tan, Yang
    JOURNAL OF COMPUTERS, 2013, 8 (10) : 2695 - 2700
  • [26] Improved multi-objective differential evolution for maintaining population diversity
    Tang, Kezong
    Wu, Jun
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 522 - 527
  • [27] Improved cervix lesion classification using multi-objective binary firefly algorithm-based feature selection
    Sahoo, Anita
    Chandra, Satish
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2016, 8 (06) : 367 - 378
  • [28] A Multi-Objective Differential Evolution Approach for the Question Selection Problem
    Paul, Dimple V.
    Pawar, Jyoti D.
    2014 FIFTH INTERNATIONAL CONFERENCE ON THE APPLICATIONS OF DIGITAL INFORMATION AND WEB TECHNOLOGIES (ICADIWT), 2014, : 219 - 225
  • [29] Multi-objective Evolutionary Feature Selection
    Kundu, Partha Pratim
    Mitra, Sushmita
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2009, 5909 : 74 - 79
  • [30] Microblog summarization using self-adaptive multi-objective binary differential evolution
    Naveen Saini
    Sriparna Saha
    Pushpak Bhattacharyya
    Applied Intelligence, 2022, 52 : 1686 - 1702