A multi-objective differential evolution feature selection approach with a combined filter criterion<bold> </bold>

被引:0
|
作者
Hancer, Emrah [1 ]
机构
[1] Mehmet Akif Ersoy Univ, Dept Comp Technol & Informat Syst, Burdur, Turkey
关键词
Feature selection; multi-objective; differential evolution; mutual information<bold>; </bold>; PARTICLE SWARM OPTIMIZATION; MUTUAL INFORMATION; ALGORITHM; CLASSIFICATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper proposes an improved filter evaluation criterion which uses the components of standard mutual information and fuzzy mutual information criteria by combining them in a simple and practical way. Then, a new filter approach is developed by integrating this criterion in multi-objective DE framework in order to enhance the performance in classification tasks. To verify the effectiveness of the developed filter approach, it is examined with single objective and multi-objective DE approaches based on both the standard mutual information and the fuzzy mutual information on a variety of benchmark datasets. The results indicate that the multi-objective DE filter approach based on the proposed filter criterion is able to achieve better classification accuracy and smaller feature subsets than other approaches based on existing criteria.<bold> </bold>
引用
收藏
页码:307 / 314
页数:8
相关论文
共 50 条
  • [1] Multi-objective Feature Selection in Classification: A Differential Evolution Approach
    Xue, Bing
    Fu, Wenlong
    Zhang, Mengjie
    [J]. SIMULATED EVOLUTION AND LEARNING (SEAL 2014), 2014, 8886 : 516 - 528
  • [2] Elitism based Multi-Objective Differential Evolution for feature selection: A filter approach with an efficient redundancy measure
    Nayak, Subrat Kumar
    Rout, Pravat Kumar
    Jagadev, Alok Kumar
    Swarnkar, Tripti
    [J]. JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2020, 32 (02) : 174 - 187
  • [3] A Multi-objective Feature Selection Based on Differential Evolution
    Zhang, Yong
    Rong, Miao
    Gong, Dunwei
    [J]. FOURTH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (CCAIS 2015), 2015, : 302 - 306
  • [4] A new multi-objective differential evolution approach for simultaneous clustering and feature selection
    Hancer, Emrah
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 87
  • [5] An Evolutionary Based Multi-Objective Filter Approach for Feature Selection
    Labani, Mahdieh
    Moradi, Parham
    Jalili, Mahdi
    Yu, Xinghuo
    [J]. 2017 2ND WORLD CONGRESS ON COMPUTING AND COMMUNICATION TECHNOLOGIES (WCCCT), 2017, : 151 - 154
  • [6] Fuzzy kernel feature selection with multi-objective differential evolution algorithm
    Hancer, Emrah
    [J]. CONNECTION SCIENCE, 2019, 31 (04) : 323 - 341
  • [7] A Multi-Objective Differential Evolution Approach for the Question Selection Problem
    Paul, Dimple V.
    Pawar, Jyoti D.
    [J]. 2014 FIFTH INTERNATIONAL CONFERENCE ON THE APPLICATIONS OF DIGITAL INFORMATION AND WEB TECHNOLOGIES (ICADIWT), 2014, : 219 - 225
  • [8] A Differential Evolution Based Feature Selection Approach Using An Improved Filter Criterion
    Hancer, Emrah
    Xue, Bing
    Zhang, Mengjie
    [J]. 2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017,
  • [9] A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection
    Marwa Hammami
    Slim Bechikh
    Chih-Cheng Hung
    Lamjed Ben Said
    [J]. Memetic Computing, 2019, 11 : 193 - 208
  • [10] A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection
    Hammami, Marwa
    Bechikh, Slim
    Hung, Chih-Cheng
    Ben Said, Lamjed
    [J]. MEMETIC COMPUTING, 2019, 11 (02) : 193 - 208