On recurrent Riemannian and Ricci curvatures of Finsler metrics

被引:0
|
作者
Faraji, H. [1 ]
Tayebi, A. [2 ]
B., Najafi [1 ]
机构
[1] Amirkabir Univ, Dept Math & Comp Sci, Tehran, Iran
[2] Univ Qom, Fac Sci, Dept Math, Qom, Iran
关键词
Riemann curvature; Ricci curvature; Recurrent Finsler metrics; Locally symmetric metric; Randers metric; Kropina metric; 4-TH ROOT METRICS; THEOREM;
D O I
10.1016/j.difgeo.2023.102051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a property of Riemannian and Ricci curvatures under which it reproduces itself, namely, recurrent Finsler metrics. We prove that if (M, F) is a recurrent Finsler manifold of non-zero isotropic flag curvature, then F is a Landsberg metric. It follows that Every positively complete 2-dimensional Randers metric is recurrent if and only if it is a Riemannian or locally Minkowskian metric. Next, we study two positive (or negative) projectively related Ricci parallel Finsler metrics on a compact manifold. We show that the projective equivalence is trivial and then the Riemannian curvatures are equal. In the same vein, we explore the class of Ricci-recurrent Randers metrics with closed and conformal form, and show that the related Riemannian metric is Ricci-recurrent if and only if the Randers metric is a Berwald metric. Finally, we find the necessary and sufficient condition under which a Kropina metric be Ricci-recurrent, provided that its one-form is closed and conformal.
引用
下载
收藏
页数:27
相关论文
共 50 条
  • [21] On strongly Ricci-Quadratic Finsler Metrics
    Esra Sengelen Sevim
    Zhongmin Shen
    Semail Ülgen
    The Journal of Geometric Analysis, 2023, 33
  • [22] On a class of projective Ricci flat Finsler metrics
    Cheng, Xinyue
    Shen, Yuling
    Ma, Xiaoyu
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 90 (1-2): : 169 - 180
  • [23] On a class of projective Ricci curvature of Finsler metrics
    Zhu, Hongmei
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (11)
  • [24] Navigation Finsler metrics on a gradient Ricci soliton
    LI Ying
    MO Xiao-huan
    WANG Xiao-yang
    Applied Mathematics:A Journal of Chinese Universities, 2024, 39 (02) : 266 - 275
  • [25] On strongly Ricci-Quadratic Finsler Metrics
    Sevim, Esra Sengelen
    Shen, Zhongmin
    Ulgen, Semail
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (10)
  • [26] Some Ricci-flat Finsler metrics
    Sevim, Esra Sengelen
    Shen, Zhongmin
    Zhao, Lili
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 83 (04): : 617 - 623
  • [27] A class of Ricci-flat Finsler metrics
    Ulgen, Semail
    Sevim, Esra S.
    ANNALES POLONICI MATHEMATICI, 2018, 121 (01) : 73 - 83
  • [28] Ricci flow and the manifold of Riemannian metrics
    Ghahremani-Gol, H.
    Razavi, A.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2013, 18 (02): : 20 - 30
  • [29] Navigation Finsler metrics on a gradient Ricci soliton
    Li, Ying
    Mo, Xiao-huan
    Wang, Xiao-yang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2024, 39 (02) : 266 - 275
  • [30] On Finsler Warped Product Metrics with Special Curvatures Properties
    Mehran Gabrani
    Bahman Rezaei
    Esra Sengelen Sevim
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 973 - 989