Research on Technology System Adaptability of Nearly Zero-Energy Office Buildings in the Hot Summer and Cold Winter Zone of China

被引:0
|
作者
Jia, Xueying [1 ]
Zhang, Hui [1 ,2 ]
Yao, Xin [3 ]
Yang, Lei [3 ]
Ke, Zikang [1 ]
Yan, Junle [1 ]
Huang, Xiaoxi [1 ]
Jin, Shiyu [1 ]
机构
[1] Hubei Univ Technol, Sch Civil Engn Architecture & Environm, Wuhan 430068, Peoples R China
[2] Natl Univ Singapore, Coll Design & Engn, Singapore 117566, Singapore
[3] Cent South Architectural Design Inst Co Ltd, Wuhan 430061, Peoples R China
关键词
nearly zero-energy office buildings; complex and diverse climates; technology system; passive design; orthogonal experiment; DIFFERENT CLIMATE ZONES; PARAMETRIC ANALYSIS; EFFICIENCY; DESIGN; CONSUMPTION; NZEB; PERFORMANCE; SIMULATION; STANDARDS; SAVINGS;
D O I
10.3390/su151713061
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the current context of huge global energy consumption and harsh climatic conditions, the energy efficiency and sustainability of buildings have received much attention. The nearly zero-energy building (nZEB) is a feasible solution for solving the energy crisis in the building sector in recent years, and it is important to study the adaptability of its technology system. However, existing studies have not addressed well the issue of the impact of complex and diverse climates on the technology systems of nZEBs. Secondly, in contrast to residential buildings, nearly zero-energy technology systems for office buildings need to be further developed. This study takes the hot summer and cold winter (HSCW) zone of China as an example and uses numerical simulations and orthogonal experiments to investigate the adaptability of nearly zero-energy office building technology systems under complex and diverse climate conditions. The results show the following: (1) Passive technologies are greatly affected by the complexity and diversity of climates. Optimal envelope thermal parameters tailored to specific zones are identified. Specifically, the optimal level of KWALL in the CT and HSCWC zones is 0.2 W/(m2 & BULL;K), and the optimal level of KWALL in the HSWWT zone is 0.3 W/(m2 & BULL;K); the optimal level of KROOF in the CT zone is 0.15 W/(m2 & BULL;K), and the optimal level of KROOF in the HSCWC and HSWWT zones is 0.25 W/(m2 & BULL;K); (2) Active technologies do not mainly receive the influence of the complexity and diversity of climates, and ED, HR, and TS measures should be adopted for office buildings; (3) The rational utilization of renewable energy is influenced by local resource conditions. This study evaluates the adaptability of GSHP, ASHP, and BIPV technologies. To better meet the requirements of nearly zero-energy office buildings, it is recommended to adopt GSHP for the CT zone and ASHP for the HCWWT zone. This study will be helpful for the development of nearly zero-energy office building technology systems in other complex and diverse climatic zones.
引用
下载
收藏
页数:21
相关论文
共 50 条
  • [21] Indicator system of energy efficient technologies evaluation of residential buildings in hot summer and cold winter regions of China
    夏煦
    YANG Qiao-xia
    CHEN Hai-ni
    Journal of Chongqing University(English Edition), 2014, 13 (02) : 43 - 53
  • [22] Research on energy efficiency of retractable roof of natatorium in hot summer and cold winter zone
    Zhang, Shuai
    Sun, Emerald Piman
    Wang, Liying
    ENERGY REPORTS, 2022, 8 : 594 - 605
  • [23] Optimization of Insulation Thickness of External Walls of Residential Buildings in Hot Summer and Cold Winter Zone of China
    Liu, Xiaojun
    Chen, Xin
    Shahrestani, Mehdi
    SUSTAINABILITY, 2020, 12 (04) : 1 - 21
  • [24] Development of China's energy efficiency design standard for residential buildings in the "hot-summer/cold-winter" zone
    Hogan, J
    Watson, R
    Huang, J
    Lang, SW
    Fu, XZ
    Lin, HY
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INDOOR AIR QUALITY, VENTILATION AND ENERGY CONSERVATION IN BUILDINGS, VOLS I-III, 2001, : 573 - 580
  • [25] Energy-quota-based integrated solutions for heating and cooling of residential buildings in the Hot Summer and Cold Winter zone in China
    Cao, Xinyun
    Yao, Runming
    Ding, Chao
    Zhou, Nan
    Yu, Wei
    Yao, Jinyang
    Xiong, Jie
    Xu, Qiang
    Pan, Li
    Li, Baizhan
    ENERGY AND BUILDINGS, 2021, 236
  • [26] Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China
    Chen, Xiao
    Wen, Yongquan
    Li, Nanyang
    SUSTAINABILITY, 2016, 8 (10)
  • [27] Impacts of shading effect from nearby buildings on heating and cooling energy consumption in hot summer and cold winter zone of China
    Ichinose, Toshiaki
    Lei, Lei
    Lin, Ye
    ENERGY AND BUILDINGS, 2017, 136 : 199 - 210
  • [28] GREENING SHADING DESIGN OF RESIDENTIAL BUILDINGS IN THE HOT SUMMER AND COLD WINTER ZONE
    Jin, Xi
    Zhang, Guoqiang
    Zhang, Zhongfeng
    Xie, Mingjing
    Xiao, Jian
    FIFTH INTERNATIONAL WORKSHOP ON ENERGY AND ENVIRONMENT OF RESIDENTIAL BUILDINGS AND THIRD INTERNATIONAL CONFERENCE ON BUILT ENVIRONMENT AND PUBLIC HEALTH, VOL I AND II, PROCEEDINGS, 2009, : 1691 - 1698
  • [29] Design of renewable energy systems for near-zero energy residence in hot summer and cold winter zone
    Chen S.-Q.
    Yu A.
    Ming Y.
    Ding D.
    Yang Y.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (04): : 795 - 804
  • [30] ENERGY EFFICIENT DESIGN OF THE ENCLOSED BALCONY OF RESIDENTIAL BUILDINGS IN HOT SUMMER AND COLD WINTER CLIMATE ZONE
    Jin, Xi
    Zhang, Guoqiang
    Xie, Mingjing
    Xiao, Jian
    FIFTH INTERNATIONAL WORKSHOP ON ENERGY AND ENVIRONMENT OF RESIDENTIAL BUILDINGS AND THIRD INTERNATIONAL CONFERENCE ON BUILT ENVIRONMENT AND PUBLIC HEALTH, VOL I AND II, PROCEEDINGS, 2009, : 1464 - 1469