Recent progress in polymer garnet composite electrolytes for solid-state lithium metal batteries

被引:7
|
作者
Rajamani, Arunkumar [1 ]
Panneerselvam, Thamayanthi [1 ]
Abraham, Sona Elsin [1 ]
Murugan, Ramaswamy [1 ]
Sivaprakasam, Sivaraman [2 ]
机构
[1] Pondicherry Univ, Dept Phys, High Energy Dens Batteries Res Lab, Pondicherry 605014, India
[2] Pondicherry Univ, Dept Phys, Pondicherry 605014, India
来源
SUSTAINABLE ENERGY & FUELS | 2023年 / 7卷 / 14期
关键词
ENHANCED IONIC-CONDUCTIVITY; ELECTROCHEMICAL PROPERTIES; HIGH-VOLTAGE; ENERGY DENSITY; LI7LA3ZR2O12; PERFORMANCE; STABILITY; TRANSPORT; GEL; LI6.75LA3ZR1.75TA0.25O12;
D O I
10.1039/d3se00421j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrolyte plays a prominent role in rechargeable batteries as it decides the safety and performance of the device. The commercialized Li-ion battery consists of a liquid electrolyte (lithium salt dissolved organic solvents) and electrodes which are separated by a Celgard membrane separator. Due to the limitations of liquid electrolytes, recent research activities focused on solid-state electrolytes instead of liquid electrolytes to produce safer and more efficient devices. Polymer garnet composite electrolytes (PGCEs) have advantages over both liquid electrolytes and solid-state electrolytes and in addition, PGCEs overcome the limitations of liquid electrolytes leading to a safer and more efficient battery. Herein, discussed is a detailed report of various polymers and their blend-based garnet composite polymer electrolytes for solid-state lithium metal batteries. There exist a multitude of polymer garnet composite electrolytes for making solid-state lithium metal batteries. Among those considered for review are (i) polyethylene oxide based PGCEs, (ii) polyvinyldinefluoride based PGCEs, (iii) polyvinylidenefluoride-co-hexafluoropropylene based PGCEs, (iv) polyacrylonitrile based PGCEs, (v) polypropylene carbonate based PGCEs, (vi) polymethyl methacrylate based PGCEs, (vii) polytetrafluoroethylene based PGCEs, (viii) polyethylene glycol diacrylate based PGCEs and (ix) polyester based PGCEs.
引用
收藏
页码:3185 / 3212
页数:28
相关论文
共 50 条
  • [41] Recent progress of solid-state lithium batteries in China
    Wu, Dengxu
    Chen, Liquan
    Li, Hong
    Wu, Fan
    APPLIED PHYSICS LETTERS, 2022, 121 (12)
  • [42] Solid Polymer Electrolytes-Based Composite Cathodes for Advanced Solid-State Lithium Batteries
    Kulkarni, Uddhav
    Cho, Won-Jang
    Cho, Seok-Kyu
    Hong, Jeong-Jin
    Shejale, Kiran P.
    Yi, Gi-Ra
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2024, 41 (02) : 385 - 402
  • [43] The research progress on COF solid-state electrolytes for lithium batteries
    Wang, Yimou
    Hao, Qinglin
    Lv, Qing
    Shang, Xinchao
    Wu, Mingbo
    Li, Zhongtao
    CHEMICAL COMMUNICATIONS, 2024, 60 (74) : 10046 - 10063
  • [44] Solid Polymer Electrolytes-Based Composite Cathodes for Advanced Solid-State Lithium Batteries
    Uddhav Kulkarni
    Won-Jang Cho
    Seok-Kyu Cho
    Jeong-Jin Hong
    Kiran P. Shejale
    Gi-Ra Yi
    Korean Journal of Chemical Engineering, 2024, 41 : 385 - 402
  • [45] Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries
    Zhang, Tengfei
    He, Wenjie
    Zhang, Wei
    Wang, Tao
    Li, Peng
    Sun, ZhengMing
    Yu, Xuebin
    CHEMICAL SCIENCE, 2020, 11 (33) : 8686 - 8707
  • [46] Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries
    Gao, Zhonghui
    Sun, Huabin
    Fu, Lin
    Ye, Fangliang
    Zhang, Yi
    Luo, Wei
    Huang, Yunhui
    ADVANCED MATERIALS, 2018, 30 (17)
  • [47] Recent Advancements in the Interfacial Stability of Garnet Solid Electrolytes and Design Strategies for Solid-State Lithium Batteries: A Review
    Khokhar, Waquar Ahmed
    Rafiq, Muhammad
    Aleem, Abdur Raheem
    Khokhar, Danish A.
    Ahmed, Adeel
    Nazir, Muhammad Altaf
    Tufail, Muhammad Khurram
    ENERGY & FUELS, 2024, 38 (22) : 21674 - 21700
  • [48] Design Strategies, Characterization Mechanisms, and Applications of MOFs in Polymer Composite Electrolytes for Solid-State Lithium Metal Batteries
    He, Honggui
    Deng, Nanping
    Wang, Xiaoyin
    Gao, Lu
    Tang, Chuqing
    Wu, Enjie
    Ren, Junguang
    Yang, Xianbo
    Feng, Nini
    Gao, Dezhou
    Zhuang, Xupin
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [49] Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries
    Wu, Qian
    Fang, Mandi
    Jiao, Shizhe
    Li, Siyuan
    Zhang, Shichao
    Shen, Zeyu
    Mao, Shulan
    Mao, Jiale
    Zhang, Jiahui
    Tan, Yuanzhong
    Shen, Kang
    Lv, Jiaxing
    Hu, Wei
    He, Yi
    Lu, Yingying
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [50] Desilicated zeolite ZSM-5 based composite polymer electrolytes for solid-state lithium metal batteries
    Tao, Yuanyuan
    Wei, Wenhui
    Gu, Qianqian
    Jiang, Xiaoping
    Li, Dongwei
    MATERIALS LETTERS, 2023, 351