The research progress on COF solid-state electrolytes for lithium batteries

被引:0
|
作者
Wang, Yimou [1 ]
Hao, Qinglin [1 ]
Lv, Qing [1 ]
Shang, Xinchao [1 ]
Wu, Mingbo [1 ]
Li, Zhongtao [1 ]
机构
[1] China Univ Petr East China, Coll Chem Engn, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China
基金
国家重点研发计划;
关键词
COVALENT ORGANIC FRAMEWORKS; CARBON; CONVERSION; EFFICIENT; STRATEGY;
D O I
10.1039/d4cc02262a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal batteries have garnered significant attention due to their high energy density and broad application prospects. However, the practical use of traditional liquid electrolytes is constrained by safety and stability challenges. In the exploration of novel electrolytes, solid-state electrolyte materials have emerged as a focal point. Covalent organic frameworks (COFs), with their large conjugated structures and unique electronic properties, are gradually gaining attention as an emerging class of solid-state electrolyte materials. In recent years, outstanding electrochemical performance has been achieved through the design and synthesis of various types of COF-based solid-state electrolytes, along with successful integration with other functional materials. This review will provide an overview of the research progress on COFs as solid-state electrolyte materials for lithium metal batteries and offer insights into their future potential in battery technology. This review focuses on the role of different COFs as solid-state electrolytes, aiming to guide the development of electrolyte materials and battery technology.
引用
收藏
页码:10046 / 10063
页数:18
相关论文
共 50 条
  • [1] Research progress on interfacial problems and solid-state electrolytes in lithium batteries
    Xiao, Zhongliang
    Jiang, Lin
    Song, Liubin
    Zhao, Tingting
    Xiao, Minzhi
    Yan, Qunxuan
    Li, Lingjun
    JOURNAL OF ENERGY STORAGE, 2024, 96
  • [2] Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries
    Liang, Jianneng
    Luo, Jing
    Sun, Qian
    Yang, Xiaofei
    Li, Ruying
    Sun, Xueliang
    ENERGY STORAGE MATERIALS, 2019, 21 : 308 - 334
  • [3] Research Progress on the Composite Methods of Composite Electrolytes for Solid-State Lithium Batteries
    Wang, Xu
    Huang, Sipeng
    Peng, Yiting
    Min, Yulin
    Xu, Qunjie
    CHEMSUSCHEM, 2024, 17 (14)
  • [4] Progress in solid electrolytes toward realizing solid-state lithium batteries
    Takada, Kazunori
    JOURNAL OF POWER SOURCES, 2018, 394 : 74 - 85
  • [5] Recent Progress of Hybrid Solid-State Electrolytes for Lithium Batteries
    Liu, Xiaoyan
    Li, Xinru
    Li, Hexing
    Wu, Hao Bin
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (69) : 18293 - 18306
  • [6] Recent Progress of Polymer Electrolytes for Solid-State Lithium Batteries
    Hu, Yilin
    Xie, Xiaoxin
    Li, Wei
    Huang, Qiu
    Huang, Hao
    Hao, Shu-Meng
    Fan, Li-Zhen
    Zhou, Weidong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (04) : 1253 - 1277
  • [7] Research progress of organic-inorganic composite electrolytes for solid-state lithium batteries
    Liu C.
    Zhong L.
    Gong X.
    Liu F.
    Lu J.
    Yu D.
    Chen X.
    Zhang M.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2024, 41 (01): : 1 - 15
  • [8] Hybrid electrolytes for solid-state lithium batteries: Challenges, progress, and prospects
    Vu, Trang Thi
    Cheon, Hyeong Jun
    Shin, Seo Young
    Jeong, Ganghoon
    Wi, Eunsol
    Chang, Mincheol
    ENERGY STORAGE MATERIALS, 2023, 61
  • [9] Solid-state polymer electrolytes in lithium batteries: latest progress and perspective
    Mu, Jingbo
    Liao, Shimin
    Shi, Linlin
    Su, Bihai
    Xu, Feng
    Guo, Zengcai
    Li, Hailing
    Wei, Fangfang
    POLYMER CHEMISTRY, 2024, 15 (06) : 473 - 499
  • [10] Application and Research Progress of Covalent Organic Frameworks for Solid-State Electrolytes in Lithium Metal Batteries
    Qiao, Yufeng
    Zeng, Xiaoyue
    Wang, Haihong
    Long, Jianlin
    Tian, Yanhong
    Lan, Jinle
    Yu, Yunhua
    Yang, Xiaoping
    MATERIALS, 2023, 16 (06)