Global Information-Assisted Fine-Grained Visual Categorization in Internet of Things

被引:3
|
作者
Li, Ang [1 ]
Kang, Bin [1 ]
Chen, Jianxin [1 ]
Wu, Dan [2 ]
Zhou, Liang [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Key Lab Broadband Wireless Commun & Sensor Network, Minist Educ, Nanjing 210003, Peoples R China
[2] Army Engn Univ PLA, Coll Commun Engn, Nanjing 210007, Peoples R China
基金
中国国家自然科学基金;
关键词
Alternative knowledge distillation strategy; fine-grained visual categorization; global-local aggregation strategy;
D O I
10.1109/JIOT.2022.3218150
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In fine-grained visual categorization (FGVC), most part-based frameworks do not work effectively in some extremely challenging scenarios such as partial occlusion. This limitation is due to the heavy disorder of local features extracted from such occluded targets. To address this issue, we propose a global information-assisted network (GIAN), where auxiliary global information can search the useful elements of local information and integrate with them for an efficient unified feature representation. In particular, in order to acquire the global information, we design a global attention-concentrated convolutional neural network (GAC-CNN) by extending a convolutional neural network with a nonlocal GCN module. Then, the unified feature representation is produced by two strategies. On the one hand, a global-local aggregation strategy is developed to selectively integrate global features with local features through consistency evaluation and reweighting method. On the other hand, an alternative knowledge distillation strategy is developed to help generate more powerful global and local features. Two strategies collaboratively make the unified features more robust and more discriminative than traditional part-based features. Experimental results show that the proposed GIAN can achieve accuracies of 92.8%, 93.8%, and 95.7% on CUB-200-2011, FGVC Aircraft, and Stanford Cars, respectively.
引用
收藏
页码:940 / 952
页数:13
相关论文
共 50 条
  • [31] Fine-Grained Encryption for Search and Rescue Operation on Internet of Things
    Li, Depeng
    Sampalli, Srinivas
    Aung, Zeyar
    Williams, John
    Sanchez, Abel
    2014 ASIA-PACIFIC WORLD CONGRESS ON COMPUTER SCIENCE AND ENGINEERING (APWC ON CSE), 2014,
  • [32] Birdsnap: Large-scale Fine-grained Visual Categorization of Birds
    Berg, Thomas
    Liu, Jiongxin
    Lee, Seung Woo
    Alexander, Michelle L.
    Jacobs, David W.
    Belhumeur, Peter N.
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 2019 - 2026
  • [33] StackDRL: Stacked Deep Reinforcement Learning for Fine-grained Visual Categorization
    He, Xiangteng
    Peng, Yuxin
    Zhao, Junjie
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 741 - 747
  • [34] Filtration and Distillation: Enhancing Region Attention for Fine-Grained Visual Categorization
    Liu, Chuanbin
    Xie, Hongtao
    Zha, Zheng-Jun
    Ma, Lingfeng
    Yu, Lingyun
    Zhang, Yongdong
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 11555 - 11562
  • [35] Multiscale attention dynamic aware network for fine-grained visual categorization
    Ou, Jichu
    Li, Wanyi
    Huang, Jingmin
    Huang, Xiaojie
    Xie, Xuan
    ELECTRONICS LETTERS, 2023, 59 (01)
  • [36] Attention Convolutional Binary Neural Tree for Fine-Grained Visual Categorization
    Ji, Ruyi
    Wen, Longyin
    Zhang, Libo
    Du, Dawei
    Wu, Yanjun
    Zhao, Chen
    Liu, Xianglong
    Huang, Feiyue
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 10465 - 10474
  • [37] Multistage attention region supplement transformer for fine-grained visual categorization
    Mei, Aokun
    Huo, Hua
    Xu, Jiaxin
    Xu, Ningya
    VISUAL COMPUTER, 2025, 41 (03): : 1873 - 1889
  • [38] Classification-Specific Parts for Improving Fine-Grained Visual Categorization
    Korsch, Dimitri
    Bodesheim, Paul
    Denzler, Joachim
    PATTERN RECOGNITION, DAGM GCPR 2019, 2019, 11824 : 62 - 75
  • [39] Fine-Grained Visual Categorization by Localizing Object Parts With Single Image
    Zheng, Xiangtao
    Qi, Lei
    Ren, Yutao
    Lu, Xiaoqiang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 1187 - 1199
  • [40] Exploring part-aware segmentation for fine-grained visual categorization
    Pang, Cheng
    Yao, Hongxun
    Sun, Xiaoshuai
    Zhao, Sicheng
    Zhang, Yanhao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (23) : 30291 - 30310