Global Information-Assisted Fine-Grained Visual Categorization in Internet of Things

被引:3
|
作者
Li, Ang [1 ]
Kang, Bin [1 ]
Chen, Jianxin [1 ]
Wu, Dan [2 ]
Zhou, Liang [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Key Lab Broadband Wireless Commun & Sensor Network, Minist Educ, Nanjing 210003, Peoples R China
[2] Army Engn Univ PLA, Coll Commun Engn, Nanjing 210007, Peoples R China
基金
中国国家自然科学基金;
关键词
Alternative knowledge distillation strategy; fine-grained visual categorization; global-local aggregation strategy;
D O I
10.1109/JIOT.2022.3218150
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In fine-grained visual categorization (FGVC), most part-based frameworks do not work effectively in some extremely challenging scenarios such as partial occlusion. This limitation is due to the heavy disorder of local features extracted from such occluded targets. To address this issue, we propose a global information-assisted network (GIAN), where auxiliary global information can search the useful elements of local information and integrate with them for an efficient unified feature representation. In particular, in order to acquire the global information, we design a global attention-concentrated convolutional neural network (GAC-CNN) by extending a convolutional neural network with a nonlocal GCN module. Then, the unified feature representation is produced by two strategies. On the one hand, a global-local aggregation strategy is developed to selectively integrate global features with local features through consistency evaluation and reweighting method. On the other hand, an alternative knowledge distillation strategy is developed to help generate more powerful global and local features. Two strategies collaboratively make the unified features more robust and more discriminative than traditional part-based features. Experimental results show that the proposed GIAN can achieve accuracies of 92.8%, 93.8%, and 95.7% on CUB-200-2011, FGVC Aircraft, and Stanford Cars, respectively.
引用
收藏
页码:940 / 952
页数:13
相关论文
共 50 条
  • [21] Multiresolution Discriminative Mixup Network for Fine-Grained Visual Categorization
    Xu, Kunran
    Lai, Rui
    Gu, Lin
    Li, Yishi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (07) : 3488 - 3500
  • [22] SHAPE-GUIDED SEGMENTATION FOR FINE-GRAINED VISUAL CATEGORIZATION
    Sun, Ming
    Yang, Jufeng
    Sun, Bo
    Wang, Kai
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,
  • [23] Refined probability distribution module for fine-grained visual categorization
    Zhao, Peipei
    Miao, Qiguang
    Li, Hongsheng
    Liu, Ruyi
    Quan, Yining
    Song, Jianfeng
    NEUROCOMPUTING, 2023, 518 : 533 - 544
  • [24] Part-Stacked CNN for Fine-Grained Visual Categorization
    Huang, Shaoli
    Xu, Zhe
    Tao, Dacheng
    Zhang, Ya
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1173 - 1182
  • [25] A Deep Sparse Coding Method for Fine-Grained Visual Categorization
    Guo, Lihua
    Guo, Chenggang
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 632 - 639
  • [26] Orientational Spatial Part Modeling for Fine-Grained Visual Categorization
    Yao, Hantao
    Zhang, Shiliang
    Xie, Fei
    Zhang, Yongdong
    Zhang, Dongming
    Su, Yu
    Tian, Qi
    2015 IEEE THIRD INTERNATIONAL CONFERENCE ON MOBILE SERVICES MS 2015, 2015, : 360 - 367
  • [27] Universal Fine-Grained Visual Categorization by Concept Guided Learning
    Bi, Qi
    Zhou, Beichen
    Ji, Wei
    Xia, Gui-Song
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 394 - 409
  • [28] Category attention transfer for efficient fine-grained visual categorization
    Liao, Qiyu
    Wang, Dadong
    Xu, Min
    PATTERN RECOGNITION LETTERS, 2022, 153 : 10 - 15
  • [29] Attentional Kernel Encoding Networks for Fine-Grained Visual Categorization
    Hu, Yutao
    Yang, Yandan
    Zhang, Jun
    Cao, Xianbin
    Zhen, Xiantong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (01) : 301 - 314
  • [30] A survey of fine-grained visual categorization based on deep learning
    Xie Yuxiang
    Gong Quanzhi
    Luan Xidao
    Yan Jie
    Zhang Jiahui
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2023,