Global Information-Assisted Fine-Grained Visual Categorization in Internet of Things

被引:3
|
作者
Li, Ang [1 ]
Kang, Bin [1 ]
Chen, Jianxin [1 ]
Wu, Dan [2 ]
Zhou, Liang [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Key Lab Broadband Wireless Commun & Sensor Network, Minist Educ, Nanjing 210003, Peoples R China
[2] Army Engn Univ PLA, Coll Commun Engn, Nanjing 210007, Peoples R China
基金
中国国家自然科学基金;
关键词
Alternative knowledge distillation strategy; fine-grained visual categorization; global-local aggregation strategy;
D O I
10.1109/JIOT.2022.3218150
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In fine-grained visual categorization (FGVC), most part-based frameworks do not work effectively in some extremely challenging scenarios such as partial occlusion. This limitation is due to the heavy disorder of local features extracted from such occluded targets. To address this issue, we propose a global information-assisted network (GIAN), where auxiliary global information can search the useful elements of local information and integrate with them for an efficient unified feature representation. In particular, in order to acquire the global information, we design a global attention-concentrated convolutional neural network (GAC-CNN) by extending a convolutional neural network with a nonlocal GCN module. Then, the unified feature representation is produced by two strategies. On the one hand, a global-local aggregation strategy is developed to selectively integrate global features with local features through consistency evaluation and reweighting method. On the other hand, an alternative knowledge distillation strategy is developed to help generate more powerful global and local features. Two strategies collaboratively make the unified features more robust and more discriminative than traditional part-based features. Experimental results show that the proposed GIAN can achieve accuracies of 92.8%, 93.8%, and 95.7% on CUB-200-2011, FGVC Aircraft, and Stanford Cars, respectively.
引用
收藏
页码:940 / 952
页数:13
相关论文
共 50 条
  • [1] Robust fine-grained visual recognition with images based on internet of things
    Cai, Zhenhuang
    Yan, Shuai
    Huang, Dan
    COMPUTATIONAL INTELLIGENCE, 2024, 40 (02)
  • [2] Feathers Dataset for Fine-Grained Visual Categorization
    Belko, Alina
    Dobratulin, Konstantin
    Kuznetsov, Andrey
    THIRTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2020), 2021, 11605
  • [3] Coarse-to-Fine Description for Fine-Grained Visual Categorization
    Yao, Hantao
    Zhang, Shiliang
    Zhang, Yongdong
    Li, Jintao
    Tian, Qi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (10) : 4858 - 4872
  • [4] FINE-GRAINED VISUAL CATEGORIZATION WITH FINE-TUNED SEGMENTATION
    Li, Lingyun
    Guo, Yanqing
    Xie, Lingxi
    Kong, Xiangwei
    Tian, Qi
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 2025 - 2029
  • [5] Squeezed Bilinear Pooling for Fine-Grained Visual Categorization
    Liao, Qiyu
    Wang, Dadong
    Holewa, Hamish
    Xu, Min
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 728 - 732
  • [6] Alignment Enhancement Network for Fine-grained Visual Categorization
    Hu, Yutao
    Liu, Xuhui
    Zhang, Baochang
    Han, Jungong
    Cao, Xianbin
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (01)
  • [7] Adaptive Triplet Model for Fine-Grained Visual Categorization
    Liang, Jingyun
    Guo, Jinlin
    Guo, Yanming
    Lao, Songyang
    IEEE ACCESS, 2018, 6 : 76776 - 76786
  • [8] ProtoSimi: label correction for fine-grained visual categorization
    Shen, Jialiang
    Yao, Yu
    Huang, Shaoli
    Wang, Zhiyong
    Zhang, Jing
    Wang, Ruxing
    Yu, Jun
    Liu, Tongliang
    MACHINE LEARNING, 2024, 113 (04) : 1903 - 1920
  • [9] Discriminative Suprasphere Embedding for Fine-Grained Visual Categorization
    Ye, Shuo
    Peng, Qinmu
    Sun, Wenju
    Xu, Jiamiao
    Wang, Yu
    You, Xinge
    Cheung, Yiu-Ming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 5092 - 5102
  • [10] Hierarchical Part Matching for Fine-Grained Visual Categorization
    Xie, Lingxi
    Tian, Qi
    Hong, Richang
    Yan, Shuicheng
    Zhang, Bo
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1641 - 1648