Multiscale spatial temporal attention graph convolution network for skeleton-based anomaly behavior detection

被引:6
|
作者
Chen, Xiaoyu [1 ,2 ]
Kan, Shichao [3 ]
Zhang, Fanghui [1 ,2 ]
Cen, Yigang [1 ,2 ]
Zhang, Linna [4 ]
Zhang, Damin [5 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[2] Beijing Key Lab Adv Informat Sci & Network Technol, Beijing 100044, Peoples R China
[3] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Hunan, Peoples R China
[4] Guizhou Univ, Coll Mech Engn, Guiyang 550025, Guizhou, Peoples R China
[5] Guizhou Univ, Coll Big Data & Informat Engn, Guiyang 550025, Guizhou, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Multiscale spatial temporal graph; Spatial attention graph convolution; Skeleton-based anomaly behavior detection; NEURAL-NETWORKS;
D O I
10.1016/j.jvcir.2022.103707
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anomaly behavior detection plays a significant role in emergencies such as robbery. Although a lot of works have been proposed to deal with this problem, the performance in real applications is still relatively low. Here, to detect abnormal human behavior in videos, we propose a multiscale spatial temporal attention graph convolution network (MSTA-GCN) to capture and cluster the features of the human skeleton. First, based on the human skeleton graph, a multiscale spatial temporal attention graph convolution block (MSTA-GCB) is built which contains multiscale graphs in temporal and spatial dimensions. MSTA-GCB can simulate the motion relations of human body components at different scales where each scale corresponds to different granularity of annotation levels on the human skeleton. Then, static, globally-learned and attention-based adjacency matrices in the graph convolution module are proposed to capture hierarchical representation. Finally, extensive experiments are carried out on the ShanghaiTech Campus and CUHK Avenue datasets, the final results of the frame-level AUC/EER are 0.759/0.311 and 0.876/0.192, respectively. Moreover, the frame-level AUC is 0.768 for the human-related ShanghaiTech subset. These results show that our MSTA-GCN outperforms most of methods in video anomaly detection and we have obtained a new state-of-the-art performance in skeleton-based anomaly behavior detection.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Multi-Branch Spatial-Temporal Attention Graph Convolution Network for Skeleton-based Action Recognition
    Wang, Daoshuai
    Li, Dewei
    Guan, Yaonan
    Wang, Gang
    Shao, Haibin
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6487 - 6492
  • [2] Spatial–Temporal gated graph attention network for skeleton-based action recognition
    Mrugendrasinh Rahevar
    Amit Ganatra
    Pattern Analysis and Applications, 2023, 26 (3) : 929 - 939
  • [3] Spatial-Temporal gated graph attention network for skeleton-based action recognition
    Rahevar, Mrugendrasinh
    Ganatra, Amit
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (03) : 929 - 939
  • [4] Spatial-Temporal Dynamic Graph Attention Network for Skeleton-Based Action Recognition
    Rahevar, Mrugendrasinh
    Ganatra, Amit
    Saba, Tanzila
    Rehman, Amjad
    Bahaj, Saeed Ali
    IEEE ACCESS, 2023, 11 : 21546 - 21553
  • [5] Skeleton-Based Human Action Recognition with Spatial and Temporal Attention-Enhanced Graph Convolution Networks
    Xu, Fen
    Shi, Pengfei
    Zhang, Xiaoping
    Journal of Advanced Computational Intelligence and Intelligent Informatics, 2024, 28 (06) : 1367 - 1379
  • [6] Temporal-enhanced graph convolution network for skeleton-based action recognition
    Xie, Yulai
    Zhang, Yang
    Ren, Fang
    IET COMPUTER VISION, 2022, 16 (03) : 266 - 279
  • [7] Spatial-temporal graph attention networks for skeleton-based action recognition
    Huang, Qingqing
    Zhou, Fengyu
    He, Jiakai
    Zhao, Yang
    Qin, Runze
    JOURNAL OF ELECTRONIC IMAGING, 2020, 29 (05)
  • [8] SelfGCN: Graph Convolution Network With Self-Attention for Skeleton-Based Action Recognition
    Wu, Zhize
    Sun, Pengpeng
    Chen, Xin
    Tang, Keke
    Xu, Tong
    Zou, Le
    Wang, Xiaofeng
    Tan, Ming
    Cheng, Fan
    Weise, Thomas
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4391 - 4403
  • [9] Multi-Stream and Enhanced Spatial-Temporal Graph Convolution Network for Skeleton-Based Action Recognition
    Li, Fanjia
    Zhu, Aichun
    Xu, Yonggang
    Cui, Ran
    Hua, Gang
    IEEE ACCESS, 2020, 8 : 97757 - 97770
  • [10] Dynamic Semantic-Based Spatial-Temporal Graph Convolution Network for Skeleton-Based Human Action Recognition
    Xie, Jianyang
    Meng, Yanda
    Zhao, Yitian
    Nguyen, Anh
    Yang, Xiaoyun
    Zheng, Yalin
    IEEE Transactions on Image Processing, 2024, 33 : 6691 - 6704